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Abstract

We estimate a Box-counting dimension of fractal surfaces, which are generated by 
iterated function systems with a vertical contraction factor function on an arbitrary data set 
over rectangular grids and can express well many natural surfaces with very complicated 
structures.
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1. Introduction

A fractal interpolation surface (FIS) is a fractal set which is a graph of an 
interpolation function. Therefore, constructions of FISs are closely associated with one 
of fractal interpolation function, i.e. interpolation functions whose graph is fractal sets.
By Barnsley[1], FIFs were introduced in 1986 and after that have widely been studied 
in approximation theory, image compression, computer graphics and so on. In many 
papers constructions of fractal interpolation surfaces on the basis of IFSs were studied 
([2, 3, 4, 5, 6, 7, 8]). Massopust presented the construction of FISs on rectangular data 
sets, at which the interpolation points on the boundary are coplanar. Geronimo and 
Hardin generalized this construction to allow more general boundary data.

Constructions of fractal interpolation surfaces, which interpolate a data set 
over rectangular grid, were studied in [2, 3, 5, 7]. A lack of constructions is to use IFSs 
constructed with a restricted data set, whose data points on the boundary are collinear, 
constant contraction factor, quadratic polynomials. In [7], these constructions were 
generalized with an arbitrary data set, Lipschitz function, contraction factor function,
lower and upper bounds for the Box-counting of the constructed surface.

In this paper, we consider the problem on improving estimation of the box 
counting dimension of fractal surfaces with vertical contraction factor function as 
fractal surfaces constructed in [7].

2. FISs over the rectangular grids

We consider the construction of fractal surfaces presented in [7]. Let the data 
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set over the rectangular grid be

},,1,0,,,1,0;),,{( 3 mjnizyxP ijji   R

),( 1010 mn yyyxxx  

and denote
,],,[],,[},,,1{},,1{ 00 yxmynxnm IIEyyIxxImnN  

,),(,],,[],,[ 11 nmyxijjjyiix NjiIIEyyIxxI
jiji

 

,,,1,0},,,1,0;),,{( nmlPzyxP llx   

.,,1,0},,,1,0;),,{( mnkPzyxP kky   

We define the domain contraction transformations ijij EEL : for 

nmNji ),( by ))(),((),( yLxLyxL
ji yxij  where

ii xxx IIL : and

jj yyy IIL : are contractive homeomorphisms with contraction factors
ji yx cc ,

satisfying the following conditions.

(1) },{},{:},,{},{: 1010 jjmyiinx yyyyLxxxxL
ji  

(2) For any }1,,1{},1,,1{  mjni  , there are },{ 0 nk xxx  ,

},{ 0 ml yyy  such that

jlylyikxkx yyLyLxxLxL
jjii




)()(,)()(
11

.                 (1)

Then nmyxij Njiccc
ji

 ),(},,{Max are contractivity factors of the 

transformations ijL . Functions nmij NjiEF  ),(,: RR are defined by

),,( zyxFij )),(()),())(,(( yxLhyxgzyxLs ijij  , where ),( yxs is a vertical 

continuous contraction function such that 1|),(|0  yxs on E , ),( yxh , ),( yxg

are continuous Lipschitz functions on E with the Lipschitz constants gh LL ,

satisfying
},0{},0{),(,),( mnzyxg   ,

,),( ijji zyxh  },,1,0{},,1,0{),( mnji   .

Then transformations nm
T

ijijij NjiFLW  ),(,),( coincide on common 

borders and are contractions with respected to some metric that is equivalent to the 

Euclidean metric on 3R . And the attractor A of the IFS ;{ 3R

},,1,,,1, mjniWij   is a graph of a continuous function REf : , i.e., a 

surface in 3R . The type of f is as follows.
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                          (2)              

3. Box-counting dimension of interpolation surface

In this section, we calculate lower and upper bounds for Box-counting 
dimension of the surface constructed above with the data set
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Since there is a bi-Lipschitz mapping between some rectangular in 2R and 
]1,0[]1,0[  , and Box-counting dimension is invariant under bi- Lipschitz mapping, 

we can assume that ]1,0[]1,0[ E . Then
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For D a compact subset of 2R , let the maximum range of f on D be 

denoted by ),(sup{|:][ 22 yxfDR f  }),(),,(|;),( 221111 Dyxyxyxf  .

Lemma 1. Let RR  DDW : be the form
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where Q is Lipschitz function with the Lipschitz constants QL , L is the domain 

contraction transformation with contraction factor Lc defined as ijL and ),( yxs

is also a contraction function with 1|),(|0  yxs .

Then, for any continuous function RDf : , )]([
),( 11 DLR

LfLF  

))((diam][ Qsf LfcDDRs  , where )(diam D is a diameter of the set D ,

|),(|Max yxss
D

 , sc is a contraction factor of ),( yxs , |),(|Max yxff
D

 .

Proof. For ))()(,(),,( DLyxyx  , let denote )~,~(:),(1 yxyxL  , 

:),(1  yxL ))(~,~( Dyx  . Then

  |),)(,(),)(,(| 1111 yxLfLFyxLfLF 

|)),(),,(()),(),,((| 1111 yxLfyxLFyxLfyxLF   

|)~,~()~,~(),()~,~()~,~(),(| yxQyxfyxsyxQyxfyxs 
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)~,~(),()~,~(),()~,~(),()~,~(),(| yxfyxsyxfyxsyxfyxsyxfyxs 

)~,~()~,~( yxQyxQ 

))~,~(),~,~(()),(),,((][ yxyxdLfyxyxdcDRs Qsf 

).)((diam][ Qsf LfcDDRs                                   □

For the NN  matrices NNijNNij vVuU   )(,)( , a relation “<” is 

defined by NjivuVU ijij

d

,,2,1,,  And let denote 
ijE

ijs Max

|),(|Min~|,),(| yxssyxs
ijE

ij  .

Theorem 1. If there is },,1,0{0 n (or },,1,0{0 n ) such that 

the points of 
0x

P (or
0yP ) are not collinear, then the Box-dimension ABdim of 

the attractor A is as follows.

(1) If ns
n

ji
ij 

1,

~ , then

 

n

ji
ij

n

ji
ij s

nB

s

n A 1,1, log1dimlog1
~

.

(2) If ns
n

ji
ij 

1,
, 2dim AB .

Proof. We first prove (1). By the hypothesis of the theorem, maximum vertical
distance calculated only with respect to Z axis from the points of 

0x
P (or

0yP ) to the 

line which passes through two end points of 
0x

P (or
0yP ) is positive. This is called a 

height and denoted by H .
After each ijW is applied to the interpolation points in E , we obtain

2)1( n new points in every ijE and the vertical lines parallel to z axis are 

mapped to the vertical lines parallel to z axis by ijW . Hence all of vertical lines with 

length H are mapped to vertical lines in ijE whose length is greater than Hsij
~ .

And using Lemma 1 for ][ ijf ER , we have bERsER fijijf  ][][ , where 

)(2 Qs Lfcb  . Let denote ][ ijf ER by ijR .

Let an injection },,1{},,1{},,1{: 2nnn   be defined by 

jniji  )1(),( . Let 22 nn  the diagonal matrices SS
~

, and let the vectors

iurh ,,, 11 be as follows.

   
)()1()()1( 211211

~,,~diag
~

,,,diag
nn

ssSssS     ,
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i , iru b1 .

For )0(r let 
rr

n

1
: , then  rr 0 . And let )( rN  be 

defined by the smallest number of r -mesh cubs that covers A . Then, since A is 

the graph of continuous function on E , the smallest number of r -mesh cubs that 

cover AEij )( R is greater than one of r -mesh cubs that cover vertical lines 

with the length Hsij
~ , and it is less than one of r -mesh cubs that cover 

parallelepiped ],
~

[ ijijij ffE  , where ijf
~

|),(|Min yxf
ijE

 , |),(|Max yxff
ijE

ij  . 
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that is, 
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1
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 iuh , where for vector

),,( 1 maa a , maa  1)(a and nr 1 .

After applying ijW to E two times, we get 2n squares of side 2/1 n in 

ijE . Since each square is obtained from each klE lying inside E by transformation 

klW , the sum of maximum ranges of f on 2n squares of side 2/1 n contained in 

ijE is less than or equal to the coordinates of vector iuu 12 nbCS  and greater 

than or equal to the coordinates of vector 12 hh CS
~

 . And we have
2

2

1
2141 1)()()( 








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
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
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


n
nNn r

rrr


 iuh 22 ,

where C is 22 nn  matrix whose entries are all 1 and 21 nr  .

After applying ijW to E three times, we get iuu 23 bnCS 2 , 

23 hh CS
~

 . Hence, after taking k such that 
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rkr n
n

 
1

,                      (3)

that is, 
1 rkr                                                 (4)

and applying ijW to E k times , we get )1(2 kn squares of side kn/1 contained 

in ijE and
2
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)1(2121 1)()()( 
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
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
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where iuu bnCS k
kk

1
1


  , 1

~
 kk CS hh . Then

iiiiru bnbnCSnbCSbCSCS kkkkk
k

12211 )()()()(       (6)

1
1)

~
( hh  k

k CS                                               (7)        

Since CS
~

and CS are non-negative irreducible matrices, from Frobenius’ 

theorem there are strictly positive eigenvectors of CS
~

and CS which correspond to 

eigenvalues 



n

ji
ijsa

1,

~:~ and 



n

ji
ijsa

1,
: . Therefore we can choose strictly positive 

eigenvectors a~ and a which correspond to eigenvalues a~ and a so that 

1ha  ~0 ,                                                 (8)

nb aiar  , .                                            (9)
Then by (5),
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211 )1)(   nnn r
r

r
r  ,)1(

1 211 







  nrnnr

r 


r
r

r

r

r

nrn

n

nN









log

)1(
1

log

log

log
1

log

)(log
21



























,log
1

2
21 )1(

1




















nrn

nr




and therefore 2
log

)(log
limdim

0






r

r
B

N
A

r 



. On the other hand, since A is a surface 

in 2R , we have 2dim AB . Hence 2dim AB .                        □

Remark 1. The result of the Theorem 1 improves estimation of Box-counting 
dimension in [7]. In fact, let denote |),(|Min:~ yxss

E
 , |),(|Max: yxss

E
 , and then 

since ,~~ ssss ijij  ),,1,( nji  , if 
n

s
1~  then ns

n

ji
ij 

1,
,

,log3log1log1log1
~~

~~
2

1,1, s
n

sn
n

s

n

s

n

n

ji

n

ji
ij





.log3log1log1 1,1, s
n

s

n

s

n

n

ji

n

ji
ij




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That is, s
nB

s
n A log3dimlog3
~

 . And if 
n

s
1~  , then since ns

n

ji
ij 

1,
, 

we have 2dim AB . This is just estimation of Box-counting dimension in [7].

Remark 2. For the surface ),()),((),(),( 1 yxQyxLfyxsyxf ij   we get 

the same results as one of the Theorem 1. In this case, ),( yxsij is contraction 

function on ijE with 1|),(|0  yxsij , and ),( yxL , ),( yxQ are defined as in (2). 

In fact, we can choose ijs , ijs~ as |,),(|Max yxss ij
E

ij
ij

 |),(|Min~ yxss ij
E

ij
ij

 in 

the proof.
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