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BOX-COUNTING DIMENSION OF A KIND OF FRACTAL
INTERPOLATION SURFACE ON RECTANGULAR GRIDS

Cholhui Yun*

Abstract

We estimate a Box-counting dimension of fractal surfaces, which are generated by
iterated function systems with a vertical contraction factor function on an arbitrary data set
over rectangular grids and can express well many natural surfaces with very complicated
structures.
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1. Introduction

A fractal interpolation surface (FIS) is a fractal set which is a graph of an
interpolation function. Therefore, constructions of FISs are closely associated with one
of fractal interpolation function, i.e. interpolation functions whose graph is fractal sets.
By Barnsley[1], FIFs were introduced in 1986 and after that have widely been studied
in approximation theory, image compression, computer graphics and so on. In many
papers constructions of fractal interpolation surfaces on the basis of IFSs were studied
([2,3,4,5, 6,7, 8]). Massopust presented the construction of FISs on rectangular data
sets, at which the interpolation points on the boundary are coplanar. Geronimo and
Hardin generalized this construction to allow more general boundary data.

Constructions of fractal interpolation surfaces, which interpolate a data set
over rectangular grid, were studied in [2, 3, 5, 7]. A lack of constructions is to use IFSs
constructed with a restricted data set, whose data points on the boundary are collinear,
constant contraction factor, quadratic polynomials. In [7], these constructions were
generalized with an arbitrary data set, Lipschitz function, contraction factor function,
lower and upper bounds for the Box-counting of the constructed surface.

In this paper, we consider the problem on improving estimation of the box
counting dimension of fractal surfaces with vertical contraction factor function as
fractal surfaces constructed in [7].

2. FISs over the rectangular grids

We consider the construction of fractal surfaces presented in [7]. Let the data
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set over the rectangular grid be

P={(X,y;.2;)€R*i=0,1---,n, j=0,1,---,m}

(Xg <X << Xpy Yo <Yy << Yp)
and denote

Nom = oo il M, 1 =1%o, Xp 1 1y =[Yo, Yl E=Toxdy,

b, =i XL 1y, =0y, Y] By =1, x ij,(i, DeN..,

P, ={(X,, Y1, 24)eP;1=0,1,---,m}, a=0,1-,n,

P, ={(X¢, ¥p,Z4s) € P;k=0,1,---,n}, B=0,1,---,m.

We define the domain contraction transformations L;:E —>E; for
(,DeNy by Ly y)=(L (X, Ly, (y) ~ where L :l,—>1, and
Lyj:

satisfying the following conditions.

Iy - Iy_ are contractive homeomorphisms with contraction factors Cy»Cy.
] 1 J

(D) Ly +{Xgs Xo b = Xy X, |—yj Yoo Y 2 Y jors Y5}

(2) For any ie{l,---,n—-1}, je{l,---,m—1}, there are X, €{Xy, X,} »
Vi €{Yo, Yn} such that

Lo, (X)) =L(x)=x, L, (y)=L, (y)=Yy;j. (1)

i+l

Then ¢y =Max{cxi,cyj},(i, i)eN,, are contractivity factors of the

transformations Ly . Functions F;:ExR—>R,(i, j))eN,, are defined by
Fiy (% ¥, 2) =s(L (X, Yz = g(X, ¥)) +h(L;(x,y)) , where s(x,y) is a vertical
continuous contraction function such that 0<|s(X, y)|<1 on E, h(X,Yy), g(x,y)
are continuous Lipschitz functions on E with the Lipschitz constants Ly, L,
satisfying

09Xy Yp) =24, (@, f) €{0,njx {0, mj,

h(x, yj)=2z;, (i, )e{0,1,---,n}x{0,1,---,m}.

Then transformations W;; = (L;;, F; )", (i, j))eN,, coincide on common
borders and are contractions with respected to some metric that is equivalent to the
Euclidean metric on R® . And the attractor A of the IFS {R’;
W

ij,i=1,~-, n, j=1---,m} is a graph of a continuous functionf :E - R, ie., a

surface in R*. The type of f is as follows.
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f(x, y)=s(x Y f (L' (% y)+Q(x, y)

2
Q(X, y) ==s(X, V)g(L;' (X, ¥)) +h(x, y)

3. Box-counting dimension of interpolation surface

In this section, we calculate lower and upper bounds for Box-counting
dimension of the surface constructed above with the data set

P :{(Xo +Mi, Yo +Mj» Zij]ERSQ i, j=0,1,--, n}
n n

Since there is a bi-Lipschitz mapping between some rectangular in R? and
[0,1]x[0,1] , and Box-counting dimension is invariant under bi- Lipschitz mapping,

we can assume that E =[0, 1]x[0, 1]. Then

P={(L,i’ Zij\JERS;iajzoala'“’ n}
n n

For D a compact subset of R?, let the maximum range of f on D be
denOted by Rf [D] = Sup{| f(x29 y2) - f(xh yl) |e (X15 yl)a (X29 y2) € D} .

Lemmal. Let W:DxR — DxR be the form
X L, (X
L(x, y) 9
y|= =L
F(x,y,2)
S(L(X, y)NZ+Q(X, Y)
where Q is Lipschitz function with the Lipschitz constants L,, L is the domain
contraction transformation with contraction factor c, defined as L; and s(x, y)
is also a contraction function with 0 < s(x, y) < 1.
Then, for any continuous function f:D—>R , RF(L’I, fOL,,)[L(D)]
S§Rf[D]+diam(D)(cs?+ L), where diam(D) is a diameter of the set D,

5= MDax Is(x, y)|, c, isa contraction factor of s(x,y), f = ng | (X, ¥)].

Proof. For (x,y),(x,y)eL(D)) , let denote L'(x,y)=2(X,y) .
L' (x', y') = (X, ¥')(€ D). Then

[F(L, fo DG y) —F(L, fo L)X, y) =

= F(L (% y), fo LT (%, y) = F(L' (X, y), fo L' (X, ¥) |

=s(x, Y (X, ¥)+Q(X, ¥) —s(x, y) f (X', ) - Q(X", ¥ |
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=506 VX, T)—s(x, Y XL Y)+s(x, ) K, §) = s(x, y) (X, )

+Q(X, ¥)-Q(X’, ¥

<SR [D]+c,d((%, V). (X, YN + Lod (X, §). (X, §)

< SR [D]+diam(D)(c, f + Ly). 0

For the NxN matrices U =(U;)yn> V =(Vj)ney » @ relation “<” is
defined by U <V <i>uij <Vjj, i,j=12,---,N And let denote S :MEiajlx

[s(%, y) |, § =Min[s(x, y)].

Theorem 1. If there is «, €{0,1,---,n} (or B, €{0,1,---,n}) such that
the points of an0 (or Pyﬂo) are not collinear, then the Box-dimension dimg A of

the attractor A is as follows.

0o s 35
(1) If Z Sij >n,then l'i‘IOgI’J:l SdlmB AS1+log'ﬁJ:1

n
i,j=1
@) If ¥ 5§ <n, dimgA=2.
i,j=1
Proof. We first prove (1). By the hypothesis of the theorem, maximum vertical
distance calculated only with respect to Z axis from the points of ano (or Pyﬁo ) to the

line which passes through two end points of ano (or Pyﬁo ) is positive. This is called a

height and denoted by H .
After each W; is applied to the interpolation points in E, we obtain

(n+1)* new points in every E; and the vertical lines parallel to z axis are
mapped to the vertical lines parallel to zaxis by W;;. Hence all of vertical lines with
length H are mapped to vertical lines in E; whose length is greater than §;H .
And using Lemma 1 for R([E;], we have R([E;]<§;R;[E]+b , where
b= \/E(CS?+ Ly). Letdenote R¢[E;] by Rj.

Let an injection 7:{l,---,n}x{l,---,n} —>{l,---,n*} be defined by
7(i, )=(@{-Dn+ j. Let n*xn? the diagonal matrices S, S and let the vectors
h,,r,u,,i be as follows.

S = diags_,

1) DY ST—I(nz) )9 S = dlag(sr—l(l) DY ST—I(nz) )5
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S SR 1
h, = : , = : , i=[i|, u =r+bi.
5 H S R 1

r'(n?) r'(n?) ‘r'(n?)

For r(>0) let e :=i

r °

then &, >0<r —>ow. And let N(g,) be

defined by the smallest number of ¢, -mesh cubs that covers A. Then, since A is
the graph of continuous function on E, the smallest number of ¢, -mesh cubs that

cover (Ej xR)N A is greater than one of &, -mesh cubs that cover vertical lines

with the length S;H , and it is less than one of &, -mesh cubs that cover

parallelepiped E;; x[fNij,?ij], where fNiJ- =Néin| f(x, v, ?ij =N£ax| f(x,y)].
ij ij

Hence,

&y

2
-l
i [§in3r‘1]g N(e )< % ([5; Ry +b)3r_1]+1)[{ o }4-1} ,
i= i,j=1

2
2 2 -1
n” ] 2 n"oo_ 2 &
25y Her ) =n* SN(E ) < 26, Roog +D)e +DH7T}+Q’

-1
mmm,®m@9ym2sN@Js®m@ﬂ+nﬂ“
n

2
}+ 1} , where for vector

a=(a,,a,), ®@=a +-+a, and &' >n.

After applying W;; to E two times, we get n® squares of side 1/n* in
E;; . Since each square is obtained from each E,; lying inside E by transformation
W,, , the sum of maximum ranges of f on n® squares of side 1/n” contained in
E; is less than or equal to the coordinates of vector u, = §Cul +nbi and greater

than or equal to the coordinates of vector h, = §Chl . And we have
2
- - NS
®(h,e ' )—n* <N(g, ) < D(U,e, ' + nh)[{n% +1]|,

where C is n®xn’ matrix whose entries are all 1 and &' >n”.

After applying W; to E three times, we get U, :§Cu2 +n’bi ,
h, = SCh, . Hence, after taking k such that
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£ <—<nz, 3)
n

that is,

r>k>r-1 (4)
and applying W;; to E k times, we get n** squares of side 1/n* contained
in E; and

-1 2

Dd(he)-n* <N(e, ) <D e + n2<“>iﬂ%} + 1} , (5)
where u, =SCu,_, +n“?'bi, h, =SCh,_, . Then

U, =(SC)*'r +(SC)*'bi + (SC)* "2 nbi +--- + (SC)n*2bi + n* i (6)

h, =(5C)“'h, (7)

Since SC and SC are non-negative irreducible matrices, from Frobenius’
theorem there are strictly positive eigenvectors of SC and SC which correspond to

eigenvalues & = Z S; and a:= Z S;j - Therefore we can choose strictly positive
i,j=1 i,j=1

eigenvectors @ and a which correspond to eigenvalues @ and a so that

0<a<h,, (®)
r<a, bi<an. ©)
Then by (5),

2
71
N(g, ) <D(u, e +n*k ‘h)ﬂ }1} <O e +n**Diyn+1)?
n

< ®((SC)*'rer! +(SC) hig! +(SC) 2 nbig ! +---+(SC)n*big ! +
+n*ig! +n?*DViyn+1)?
<®((SC)“'ae; ‘+(§C)""53"n+(§C)"’253"n2+ +(SCyag'n* ! +
<@ 'me' +a e n+a e 'n? +---+aus'n" +
+ue.'n" + . 'nN(n+1)?, (10)
where 1 =®(a).

On the other hand, since 0<S; <S;, i, j=L--,n, we have &=

n__ n n n
LS <Y =a. If a@>n,then 1>—>—. Therefore,
ij=1 ij=1 a a
2 r r
-l —]— n n n
N(g)<a e 'm| l+n+—+-+ + (n+1)*
3 ar—l —ar—l
7
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= e u|l 1+ +—
1-—
a
But since
;
n[l—[fj }
a nr
y=1+ — >0,
1-n Ha
a
we have

logN(g, ) < (r—1)loga +loge, " +log(zy(n+ D?),

logN(e,) _ () logd 1 Jog(zy(n+1)*)
—loge, rlogn —loge,

= — 2
~ log’ - loga _, log(uy(n+1) ),

rlogn —loge,

where logX implies log), with a>1. Hence

dimg A= im Jog N(&,)
-0 —loge,

5

T

j=1

<l+log? =1+log};

By (5), )
N(g,) > @(hs ) —n* = d((SC)'hg") —n*

> @((SC)'ag ) -n* =3 ' o@)e; ! —n
SE 2 on? =g n'
= r 4 —%r H ar,z >

where 2 =®(Q).Butsince @ >n,thereis r, such thatforall r(>r,)

r

ﬁ_ar—z >0.

Hence for r(>r,)
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r
IOgN(gr)21+(r—2) loga N a’
—loge, rlogn —loge,

_ 5
dimg A= Tim ENED 5y 108 _j 1o (12)
-0 —loge,
1§IJ

s 3
' <dimg A<1+log}”

s

By (11), (12)if ¥ § >n, weget 1+logh"
ij=1

We now prove (2). In the case of ) S.=a<n,by(10)

i,j=1

|
5]
=

N(g,)<@ e, +a e, 'n+a e, 'n® +---+aue;'n"™" +

_ _ 1
+ae;'n" + g n ) (n+1)? s,s;‘nr,u(n“ +r+jj(n+l)2 ,
7

1
log ,E(n‘ +r+:j(n+1)2 j
logN(gr)<1+lognr+ ( H

—loge, logn" —loge,
[ - 1
alntere— (n+l)2]
:2+llogg { ”] ,
r
logN(e,)

and therefore dimg A= lim < 2. On the other hand, since A is a surface

-0 —loge,

in R?, wehave dimg A>2.Hence dimg A=2. o

Remark 1. The result of the Theorem 1 improves estimation of Box-counting

dimension in [7]. In fact, let denote S := MEin [s(x,¥)|, §:= MEax | s(X, ¥)|, and then

.. . - 1
LG, =10, if §>— then ¥ s;>n,
n i,j=1

El

g
-1

1+log;™ ' >1+log; 21+logﬂ2§ =3+log:,

7=
Lo

1+logi™ " <1+logh™ =3+1log’.
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That is, 3+log] <dimg A<3+log}. And if § Sl, then since i §; <n,
n i,j=1

we have dimg A=2. This is just estimation of Box-counting dimension in [7].

Remark 2. For the surface f(X, y)=s;(X, y)f (L', ) +Q(x, y) we get
the same results as one of the Theorem 1. In this case, s;(X,Y) is contraction

function on Ej; with 0<|s;(x,y)[<1l, and L(X,y), Q(X,Y)are defined as in (2).
In fact, we can choose §;, §; as §; =l\/éax|sij(x, Iy =Néin|sij(x, y)| in
ij ij

the proof.
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