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Abstract

Let R be a hyperring (in the sense of [5]) and M be a hypermodule on R. In

this article we introduce class of small subhypermodules ofM . First we get some

properties of subhypermodules and then the class of small subhypermodules

and small homomorphism in the category of hypermodules are investigated.

For example we show that if M is a hypermodule and N is a direct summand

of M , then a small subhypermodule K of M which is contained in N , is small

in N . Also we get some important applications of small subhypermodules in

category of hypermodules (for example in exact sequences etc.).
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1 Introduction

The categories of hypergroups, hypermodules and hyperrings have many important

roles in hyperstructures. Some authors got many exiting results about these theories.

Reader can see references [1], [3], [4], [5] to get some basic information about the

categories of hypergroups, hyperrings and hypermodules. Also reference [8] can be

suitable to get some information about rings and modules theory.

We recall some definitions and theorems from above references which we need them

to develop our paper.

A hyperstructure is a nonvoid set H together with a function . : H × H −→
P ∗(H), where . is called a hyperoperation and P ∗(H) is the set of all nonempty

subsets of H.

For A,B ⊆ H and x ∈ H we define

A.B =
⋃

a∈A,b∈B
a.b, x.B = {x}.B, A.x = A.{x}.

1

Galaxy
Text Box
5



Definition 1.1 A hyperstructure H with a hyperoperation + is called a canonical

hypergroup if the following hold for H;

(i) (x+ y) + z = x+ (y + z) for all x, y, z ∈ H;

(ii) x+ y = y + x for all x, y ∈ H;

(iii) there is an element, say 0, such that 0 + x = {x}, for every x ∈ H;

(iv) For each x ∈ H there exists a unique element x′ ∈ H, such that 0 ∈ x + x′.

(we denote x′ by −x and it is called the opposite of x). Also we write x − y
instead of x+ (−y);

(v) z ∈ x+ y =⇒ y ∈ z − x for all x, y, z in H.

Note that 0 is unique and for every x ∈ H we have x + 0 = 0 + x = {x}, we

identify a singleton set {x} by x.

Canonical hypergroups were studied by J. Mittas in [7].

Definition 1.2 A non-void set R with a hyperoperation (+) and with a binary

operation (.) is called a hyperring if

(R1) : (R,+) is a canonical hypergroup;

(R2) : (R, .) is a multiplicative semigroup having 0, such that x.0 = 0.x = 0 for

all x ∈ R;

(R3) : z.(x+ y) = z.x+ z.y and (x+ y).z = x.z + y.z for all x, y, z ∈ R.

If there exists an element 1 ∈ R such that 1.x = x.1 = x for all x ∈ R, then we say

R is a unitary hyperring.

For more details about the theory of hyperrings see [3, 4].

Throughout this paper R is a unitary hyperring and all related hypermodules

are R–hypermodules.

Definition 1.3 (See [6]) A left hypermodule over a unitary hyperring R is a canon-

ical hypergroup (M,+) together with an external composition . : R ×M −→ M ,

denoted by (r,m) 7→ r.m ∈ M , such that for all x, y ∈ M and all r, s ∈ R, the

following hold:

(M1) : r.(x+ y) = r.x+ r.y;

(M2) : (r + s).x = r.x+ s.x;

(M3) : (rs).x = r.(s.x);

(M4) : 1.m = m and 0.m = 0, for each m ∈M .
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Let (M,+) be an R–hypermodule and N be a nonempty subset of M . Then N

is called a subhypermodule of M if (N,+) is a canonical subhypergroup of (M,+)

and N is a hypermodule over R, under external composition . to R×N . By N ≤M ,

we mean N is a subhypermodule of M .

Lemma 1.4 Let M be a hypermodule and N be a nonvoid subset of M . Then N

is a subhypermodule of M if and only if for every x, y ∈ N and r ∈ R we have

rx+ y ⊆ N .

Proof. Obvious. �

Reader can refer to [2] for more information about hypermodules and subhypermod-

ules and also about some special subhypermodules.

Let M,N be two R–hypermodules. A hyperoperation f : M −→ N is called a

homomorphism if for every pair x, y ∈M and every r ∈ R the following hold

1. f(x+ y) = f(x) + f(y);

2. f(rx) = rf(x),

and f is called a weak homomorphism if

1. f(x+ y) ⊆ f(x) + f(y);

2. f(rx) = rf(x).

Note. For two hypermodules M,N and a homomorphism f : M −→ N , it is

easy to see that f(0) = 0.

Let M be a hypermodule over a hyperring R and N ≤ M . Consider M/N =

{m+N | m ∈M}, then M/N becomes a hypermodule over R under hyperoperation

defined by + : M/N × M/N −→ P ∗(M/N) and external composition . : R ×
M/N −→M/N such that m+N+m′+N = {x+N | x ∈ m+m′} and r.(m+N) =

rm+N for m,m′ ∈M and r ∈ R. Note that m+N = N if and only if m ∈ N .

For a hypermodule M and a subhypermodule N of M there exists an epimor-

phism say natural epimorphism π : M −→ M/N defined by π(m) = m + N and

obviously Ker(π) = N .

Note. ([6, corollary 3.2]) Let M,N be R–hypermodules. If f : M −→ N is a

homomorphism and K ≤M . Then

1. if K ⊆ Ker(f), then there exists a unique homomorphism f̄ : M/K −→ N

such that f̄(m+K) = f(m) for every m ∈M ;
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2. if f is onto, then f̄ is onto;

3. if K = Ker(f), then f̄ is one to one;

4. if f is onto and K = Ker(f), then f̄ is an isomorphism.

Let M be a hypermodule and A , B two subhypermodules of M . Define

A+B =
⋃
{a+ b|a ∈ A, b ∈ B}

Then it is clear that A+B is a subhypermodule of M .

Let M be a hypermodule and A ≤M , B ≤M ; we have the following properties:

(i) A+B = B if and only if A ⊆ B.

(ii) A+ {0} = A.

(iii) If C,D ≤ A and C,D ≤ B, then C +D ⊆ A ∩B.

(iv) If a ∈ A and b ∈ B, then a+ b ⊆ A+B.

Other trivial properties of sum of submodules which are satisfied in modules theory,

are true also in hypermodules theory.

Remark. Let M be a hypermodule, N a subhypermodule of M and x, y ∈ M ;

then by properties of hypermodules we have

x+N = y +N iff N = (x+N)− (y +N) = (x− y +N) = {t+N |t ∈ x− y}. So

x+N = y +N iff N = t+N for some t ∈ x− y.

Also we have (x+N) + (y +N) = N iff x+ y +N = N iff x+ y ⊆ N .

Lemma 1.5 Let M , N be hypermodules and K a subhypermodule of both of them.

Then M/K = N/K if and only if M = N .

Proof. If M = N , then trivially M/K = N/K.

We prove the converse. Suppose that M/K = N/K and m ∈ M . Then m + K ∈
M/K = N/K and so there exists an element n ∈ N such that m+K = n+K. Now

by above Remark, K = t + K for some t ∈ m − n and so t ∈ K. Since t ∈ m − n,

we have m ∈ t + n. Now t ∈ K ⊆ N and n ∈ N . Therefore m ∈ t + n ⊆ N ; i.e.

M ⊆ N . By a similar way we obtain N ⊆M . Thus M = N . �

Let M be a hypermodule and X ≤ Y ≤ M , L ≤ M . It is not difficult to see

that Y
X + L+X

X = L+Y
X . In particular if A,B,C are subhypermodules of M such that

A+B = M , then A+C
C + B+C

C = M
C .

Note. Let M,N be hypermodules and A, B be subhypermodules of M , N ,

respectively. If f : M −→ N is a homomorphism, then it is clear to see that
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f(A) = {f(a)|a ∈ A} is a subhypermodule of N and f−1(B) = {x ∈ M |f(x) ∈ B}
is a subhypermodule of M .

Proposition 1.6 Let M,N be hypermodules and f : M −→ N a homomorphism.

For two subhypermodules A,B of M we have the following statements

1. f(a+ b) ⊆ f(A+B) for every a ∈ A and b ∈ B.

2. f(A+B) = f(A) + f(B).

3. Ker(f) = {m ∈M |f(m) = 0} is a subhypermodule of M .

4. Im(f) = {f(m)|m ∈M} is a subhypermodule of N .

Proof.

1. Since a+ b ⊆ A+B, simply we can conclude f(a+ b) ⊆ f(A+B).

2. It is clear that f(A) ⊆ f(A+B) and f(B) ⊆ f(A+B), so f(A)+f(B) ⊆ f(A+B).

Now let x ∈ f(A + B). Then there exists an element t ∈ A + B such that

x = f(t). So there exist a ∈ A and b ∈ B such that t ∈ a+ b and hence x = f(t) ∈
f(a+ b) = f(a) + f(b) ⊆ f(A) + f(B). This complete the proof.

Numbers 3 and 4 follows immediately from last note. �

2 Small subhypermodules

In this section we introduce a class of subhypermodules and proceed to get some

suitable results about this kind of hypermodules.

Definition 2.1 Let M be a hypermodule and N ≤ M , then N is called a small

subhypermodule of M (denoted by N �M) if N +K 6= M for all proper subhyper-

module K of M ; or equivalently N +K = M implies K = M for every K ≤M .

For two hypermodules M,N , an epimorphism f : M −→ N is called a small

epimorphism if Ker(f)�M .

Example 2.2 1. Consider the hypermodule Z
4Z on hyperring Z with trivial hy-

peroperations. Then 2Z
4Z �

Z
4Z .

2. The hypermodule Z with trivial hyperoperations on Z has no small subhyper-

modules, because for every subhypermodule nZ of Z, there exists a subhyper-

module mZ 6= Z of Z such that nZ + mZ = Z; by getting a natural number

m 6= 1 such that (m,n) = 1.
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3. Consider the hypermodule Z
12Z with trivial hyperoperations on hyperring Z.

We have 3Z
12Z + 4Z

12Z = Z
12Z . So neither 3Z

12Z nor 4Z
12Z are small in Z

12Z . But it is

not difficult to see that 6Z
12Z �

Z
12Z .

Proposition 2.3 Let M be a hypermodule and K a subhypermodule of M . Then

the following statements are equivalent

1. K �M ;

2. The natural epimorphism π : M −→M/K is a small epimorphism;

3. For every hypermodule N and every homomorphism f : N −→M ,

Im(f) +K = M implies Im(f) = M.

Proof. Straightforward. �

Proposition 2.4 Let M be a hypermodule and X ≤ Y , N be subhypermodules of

M . Then

1. Y �M if and only if X �M and Y/X �M/X.

2. N + Y �M if and only if N �M and Y �M .

Proof. 1. Suppose that Y � M and X + L = M for some L ≤ M . Since X ≤ Y ,

we have M = X + L ≤ Y + L ≤M . Hence M = Y + L and so L = M as Y �M .

Now suppose that Y/X + L/X = M/X for some L ≤ M . Then M = L + Y by

Lemma 1.5. Thus M = L and so M/X = L/X; i.e. Y/X �M/X.

For converse suppose that X � M and Y/X � M/X. Let M = Y + K for some

K ≤M . Then
M

X
=
Y +K

X
=
Y

X
+
K +X

X
.

Since Y/X � M/X, then M
X = K+X

X and hence M = K + X by Lemma 1.5. Now

since X �M , we have K = M . This complete the proof.

2. Suppose that N + Y � M . Since N ≤ N + Y and Y ≤ N + Y , simply we

can conclude that N �M and Y �M .

For converse suppose that N � M and Y � M and M = L + N + Y for some

L ≤M . By hypothesis we have M = L+N and then M = L; i.e. N + Y �M . �

The following corollary is an immediate result from Proposition 2.4.

Corollary 2.5 Let M be any hypermodule. Any finite sum of small subhypermod-

ules of M is again small in M .
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Proposition 2.6 Let M,N be hypermodules and K a subhypermodule of M . More-

over let f : M −→ N be a homomorphism. If K �M , then f(K)� N .

Proof. Suppose that f(K) + L = N for some subhypermodule L of N . We first

show that K + f−1(L) = M . To see this, let m ∈M . Then f(m) ∈ N = f(K) + L

and so there exist elements k ∈ K and l ∈ L such that f(m) = f(k) + l. Hence

l ∈ f(m) − f(k) = f(m − k). This causes the existence an element t ∈ m − k such

that l = f(t). Since t ∈ m− k, so m ∈ t+ k = f−1(l) + k ⊆ f−1(L) +K. Therefore

M ⊆ f−1(L) + K and finally M = f−1(L) + K. Now since K � M , we have

f−1(L) = M .

This implies K ≤ f−1(L) and then f(K) ≤ L. Now N = f(K) + L = L; i.e.

f(K)� N . �

Corollary 2.7 Let M be hypermodule and K ≤ N ≤ M such that K � N . Then

K �M .

Proof. Consider the inclusion map ι : N −→M and apply Proposition 2.6. �

Proposition 2.8 Let M,N be hypermodules. Then an epimorphism g : M −→ N

is small if and only if for every homomorphism f , if gf is epimorphism, then f is

epimorphism.

Proof. Suppose that g is a small epimorphism; i.e. Ker(g) � M . Let L be a

hypermodule and f : L −→ M be a homomorphism such that gf is epic. First we

show that Im(f) + Ker(g) = M . To see this let m ∈ M , then g(m) ∈ N . Since

gf is epic, there exists an element l ∈ L such that g(m) = gf(l) = g(f(l)). So

0 ∈ g(m) − g(f(l)) = g(m − f(l)) and hence there exists an element x ∈ m − f(l)

such that g(x) = 0; i.e. x ∈ Ker(g). Now we have m ∈ x+ f(l) ⊆ Ker(g) + Im(f)

and consequently M = Im(f) +Ker(g).

Now since Ker(g)�M , we have Im(f) = M ; i.e. f is epic.

For converse let Ker(g) +K = M for some subhypermodule K of M . Let ι : K −→
M be the inclusion map, then gι : K −→ N is epic. Indeed let n ∈ N . Since g is

epic, there exists m ∈M such that n = g(m). Since M = Ker(g)+K, so there exist

x ∈ Ker(g) and k ∈ K such that m ∈ k+ x. Thus g(m) ∈ g(k+ x) = g(k) + g(x) =

g(k) + 0 = {g(k)}; i.e. g(m) = g(k) = g(ι(k) = gι(k). This implies that gι is epic.

Now by hypothesis ι must be epic and so K = Im(ι) = M ; i.e. Ker(g)�M . �

Definition 2.9 Let M be a hypermodule and N,K subhypermodules of M .

We say K and N are independent, if K ∩N = 0. If N,K are independent then

N +K is denoted by N ⊕K.
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Also a subhypermodule N of M is called a direct summand of M if M = N ⊕N ′

for some N ′ ≤M .

A hypermodule M is called indecomposable if whenever M = M1 ⊕M2, then

M1 = 0 or M2 = 0.

Let M be any hypermodule and A,B and C be subhypermodules of M . Then

it need not be that A ∩ (B + C) = (A ∩B) + (A ∩ C).(see the following example)

Example 2.10 Let M = {(x, y)|x, y ∈ Z} with trivial hyperoperations on hyper-

ring Z. Also let

A = {(x, x)|x ∈ Z}, B = {(x, 0)|x ∈ Z} and C = {(0, x)|x ∈ Z}.

Then A,B and C are subhypermodules of M and we have

A ∩ (B + C) = A 6= 0 = (A ∩B) + (A ∩ C).

In next proposition we add a condition that the above equality will be satisfied.

Lemma 2.11 (modularity law) Suppose that M is a hypermodule and A,B,C are

subhypermodules of M such that B ≤ A. Then A ∩ (B + C) = B + (A ∩ C).

Proof. Clearly B + (A ∩ C) ⊆ A ∩ (B + C).

Conversely let x ∈ A∩(B+C). Then x = a ∈ b+c for some a ∈ A, b ∈ B and c ∈
C. So we have c ∈ a − b ⊆ A, and hence c ∈ A ∩ C. But x ∈ b + c ⊆ B + A ∩ C.

Thus A ∩ (B + C) ⊆ B + (A ∩ C). �

Proposition 2.12 Suppose that M = M1⊕M2 is a hypermodule where M1,M2 are

subhypermodules of M . Then for each m ∈M there exist a unique element m1 ∈M1

and a unique element m2 ∈M2 such that m ∈ m1 +m2.

Proof. Obviously, for each m ∈ M there exist m1 ∈ M1 and m2 ∈ M2, such

that m ∈ m1 + m2. Now suppose that m ∈ m1 + m2 and m ∈ n1 + n2 for some

m1, n1 ∈M1 and m2, n2 ∈M2. Thus we have 0 ∈ m−m ⊆ (m1 +m2)− (n1 +n2) =

(m1 − n1) + (m2 − n2) and so there exist x ∈ m1 − n1 ⊆M1 and y ∈ m2 − n2 ⊆M2

such that 0 ∈ x + y. Hence x = −y ∈ M1 ∩M2 =< 0 >; i.e, 0 ∈ m1 − n1 and

0 ∈ m2 − n2 that shows m1 = n1 and m2 = n2. �

Proposition 2.13 Let M be a hypermodule, N a direct summand of M and K a

small subhypermodule of M contained in N . Then K is small in N .

Proof. Suppose that M = N ⊕N ′ for some N ′ ≤M . Also let N = K + L for some

L ≤ N . Therefore M = (K +L)⊕N ′ = K + (L⊕N ′). Since K �M , we conclude

M = L⊕N ′. Now by modularity law we have N = L+ (N ∩N ′) = L+ 0 = L; i.e.

K � N . �
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Proposition 2.14 Let K1 ≤ M1 ≤ M and K2 ≤ M2 ≤ M be hypermodules such

that M = M1 ⊕M2. Then

K1 ⊕K2 �M1 ⊕M2 iff K1 �M1 and K2 �M2.

Proof. Suppose that K1 � M1 and K2 � M2, then by Corollary 2.7 we have

K1 � M1 ⊕M2 and also K2 � M1 ⊕M2. Now by Proposition 2.4(ii), we deduce

that K1 ⊕K2 �M1 ⊕M2.

For converse, suppose that K1 ⊕K2 � M1 ⊕M2. By Proposition 2.4 (i), we have

K1 � M1 ⊕M2 and K2 � M1 ⊕M2. Now since K1 ≤ M1 and K2 ≤ M2, applying

Proposition 2.13 the proof will be completed. �

Proposition 2.15 Let M be a non-zero hypermodule and K be a small subhyper-

module of M . If M
K is indecomposable then so is M .

Proof. Suppose that M = M1 ⊕M2. Then

M

K
=
M1 +K

K
⊕ M2 +K

K
.

Since M/K is indecomposable, either M1+K
K = M

K or M2+K
K = M

K and hence either

M1+K = M or M2+K = M . Now since K �M , we conclude that either M1 = M

or M2 = M , as required. �

Definition 2.16 Let M,N and K be hypermodules.

We say the sequence 0 −→ K
f−→ M

g−→ N −→ 0 is an exact sequence if, f is a

monomorphism, g is an epimorphism and Im(f) = Ker(g).

Proposition 2.17 Assume that the following diagram of hypermodules is commu-

tative such that both rows are exact sequences and α is epic;

0 −→ A
f−→ B

g−→ C −→ 0

↓α ↓β ↓γ

0 −→ A′
f ′
−→ B′

g′−→ C ′ −→ 0

If g is small, then so is g′.

Proof. Suppose that Ker(g′) + L′ = B′ for some L′ ≤ B′. Since α is epic, we have

(f ′oα)(A) = f ′(α(A)) = f ′(A′) = Im(f ′) = Ker(g′). Now

Ker(g′) = (f ′oα)(A) = (βof)(A) = β(f(A)) = β(Im(f)) = β(Ker(g)),

by the commutativity of diagram. So β(Ker(g))+L′ = B′. From the last statement

we can show that Ker(g) + β−1(L′) = β−1(B′) = B. To see this let x ∈ B, then
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β(x) ∈ B′ = β(Ker(g)) + L′ and so there exist y ∈ Ker(g) and l′ ∈ L′ such

that β(x) ∈ β(y) + l′. Therefore l′ ∈ β(x) − β(y) = β(x − y), and hence there

exists an element t ∈ x − y such that l′ = β(t). So t = β−1(l′) ∈ β−1(L′). Now

x ∈ t + y ⊆ β−1(L′) + Ker(g). Hence B ⊆ β−1(L′) + Ker(g). Also it is clear that

β−1(L′) + Ker(g) ⊆ B. Since Ker(g) � B, we conclude that B = β−1(L′) and

hence L′ = B′; that is Ker(g′)� B′. �

References

[1] R. Ameri, On categories of hypergroups and hypermodules, Journal of Discrete

Mathematical sciences, 6(2003), No. 2–3, PP. 121–132.

[2] R. Ameri and M. M. Zahedi, On the prime, primary and maximal subhy-

permodules, Italian Journal of Pure and Applied Mathematics, 5(1999), PP.

61–80.

[3] B. Davvaz, Remarks on weak hypermodules, Bull. Korean Math. Soc, 36(1999),

No. 3, PP. 599–608.

[4] Violeta Leoreanu Fotea, Fuzzy hypermodules, Computers and Mathemat-

ics with Applications, 57(2009), PP. 466–475.

[5] M. Krasner, A class of hyperrings and hyperfields, IJMMS, 6(1983), No. 2,

PP. 307–311.

[6] A. Madanshekaf, Exact category of hypermodules, IJMMS, (2006), PP. 1–8.

[7] J. Mittas, Hypergroupes canoniques, Mathematica Balkanica, 2(1972), PP.

165–179.

[8] Wisbauer. R., Foundations of Modules and Ring Theory, Gordon and Breakch,

philadelphia, (1991).

10

Galaxy
Text Box
14


	Text2: ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2013, VOLUME 3, ISSUE 1, p.5-14


