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Abstract

Let R be a hyperring (in the sense of [5]) and M be a hypermodule on R. In
this article we introduce class of small subhypermodules of M. First we get some
properties of subhypermodules and then the class of small subhypermodules
and small homomorphism in the category of hypermodules are investigated.
For example we show that if M is a hypermodule and N is a direct summand
of M, then a small subhypermodule K of M which is contained in N, is small
in N. Also we get some important applications of small subhypermodules in

category of hypermodules (for example in exact sequences etc.).
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1 Introduction

The categories of hypergroups, hypermodules and hyperrings have many important
roles in hyperstructures. Some authors got many exiting results about these theories.
Reader can see references [1], [3], [4], [5] to get some basic information about the
categories of hypergroups, hyperrings and hypermodules. Also reference [8] can be
suitable to get some information about rings and modules theory.

We recall some definitions and theorems from above references which we need them
to develop our paper.

A hyperstructure is a nonvoid set H together with a function . : H x H —
P*(H), where . is called a hyperoperation and P*(H) is the set of all nonempty
subsets of H.

For A,B C H and x € H we define

A.B = U ab, x.B={z}.B, Ax=A{zx}.
a€AbeEB
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Definition 1.1 A hyperstructure H with a hyperoperation + is called a canonical

hypergroup if the following hold for H;

(i
(i) z+y=y+x for all x,y € H;

)
)
)
)

(x+y)+z=xz+ (y+z) forall z,y,z € H;

(iii) there is an element, say 0, such that 0 + z = {z}, for every z € H;

(iv) For each x € H there exists a unique element 2’ € H, such that 0 € = + 2.
(we denote ' by —z and it is called the opposite of x). Also we write z — y
instead of x + (—y);

(v) zezx+y=—y€cz—aforall z,y,zin H.

Note that 0 is unique and for every z € H we have z +0 = 0+ = = {z}, we
identify a singleton set {z} by z.
Canonical hypergroups were studied by J. Mittas in [7].

Definition 1.2 A non-void set R with a hyperoperation (+) and with a binary

operation (.) is called a hyperring if
(Ry) : (R,+) is a canonical hypergroup;

(R2) : (R,.) is a multiplicative semigroup having 0, such that x.0 = 0.2 = 0 for
all x € R;

(R3): z.(z+y)=zx+zyand (r+vy).z=x2+y.zforall z,y,z € R.
If there exists an element 1 € R such that 1.x = 2.1 = zx for all x € R, then we say

R is a unitary hyperring.

For more details about the theory of hyperrings see [3, 4].
Throughout this paper R is a unitary hyperring and all related hypermodules
are R—hypermodules.

Definition 1.3 (See [6]) A left hypermodule over a unitary hyperring R is a canon-
ical hypergroup (M,+) together with an external composition . : R x M — M,
denoted by (r,m) — r.m € M, such that for all x,y € M and all r,s € R, the
following hold:

(M) : ri(x+y) =ra+ry;

(M) = (r+s).x =rx+ s.z;

(M3) = (rs).x =r.(s.x);

(My) : 1.om =m and 0.m = 0, for each m € M.


Galaxy
Text Box
6


ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2013, VOLUME 3, ISSUE 1, p.5-14

Let (M,+) be an R-hypermodule and N be a nonempty subset of M. Then N
is called a subhypermodule of M if (N,+) is a canonical subhypergroup of (M, +)
and N is a hypermodule over R, under external composition . to Rx N. By N < M,

we mean NN is a subhypermodule of M.

Lemma 1.4 Let M be a hypermodule and N be a nonvoid subset of M. Then N
is a subhypermodule of M if and only if for every x,y € N and r € R we have
re+1y C N.

Proof. Obvious. (]

Reader can refer to [2] for more information about hypermodules and subhypermod-
ules and also about some special subhypermodules.

Let M, N be two R—hypermodules. A hyperoperation f : M — N is called a
homomorphism if for every pair x,y € M and every r € R the following hold

L fz+y) = f(z)+ f(y);
2. f(ra) =rf(z),
and f is called a weak homomorphism if
L flz+y) C flx)+ fy);
2. f(ra) =rf(x).

Note. For two hypermodules M, N and a homomorphism f : M — N, it is
easy to see that f(0) = 0.

Let M be a hypermodule over a hyperring R and N < M. Consider M/N =
{m+N | m € M}, then M/N becomes a hypermodule over R under hyperoperation
defined by + : M/N x M/N — P*(M/N) and external composition . : R X
M/N — M/N such that m+N+m'4+N ={z+N |z € m+m'} and r.(m+N) =
rm + N for m,m’ € M and r € R. Note that m + N = N if and only if m € N.

For a hypermodule M and a subhypermodule N of M there exists an epimor-
phism say natural epimorphism ©m : M — M/N defined by w(m) = m + N and
obviously Ker(m) = N.

Note. ([6, corollary 3.2]) Let M, N be R-hypermodules. If f : M — N is a
homomorphism and K < M. Then

1. if K C Ker(f), then there exists a unique homomorphism f : M/K — N
such that f(m + K) = f(m) for every m € M;

7
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2. if f is onto, then f is onto;
3. if K = Ker(f), then f is one to one;

4. if f is onto and K = Ker(f), then f is an isomorphism.
Let M be a hypermodule and A , B two subhypermodules of M. Define
A+B=|J{a+blac Abe B}

Then it is clear that A + B is a subhypermodule of M.

Let M be a hypermodule and A < M, B < M; we have the following properties:
(i) A+ B=Bif and only if A C B.
(1) A+ {0} = A.
(tit) f C,D < Aand C,D < B, then C+ D C AN B.
(iv)Ifae Aand b € B, then a+b C A+ B.
Other trivial properties of sum of submodules which are satisfied in modules theory,

are true also in hypermodules theory.

Remark. Let M be a hypermodule, N a subhypermodule of M and z,y € M;
then by properties of hypermodules we have
r+N=y+Niff N=(x+N)—(y+N)=(x—y+N)={t+N|tcz—y}. So
r+N=y+Niff N=t+ N for some t €z —y.
Also we have (t+ N)+ (y+ N)=Niff e+ y+ N=Niff e +y C N.

Lemma 1.5 Let M, N be hypermodules and K a subhypermodule of both of them.
Then M/K = N/K if and only if M = N.

Proof. If M = N, then trivially M/K = N/K.

We prove the converse. Suppose that M/K = N/K and m € M. Then m + K €
M/K = N/K and so there exists an element n € N such that m+ K = n+ K. Now
by above Remark, K =t + K for somet € m —n and so t € K. Since t € m — n,
we have m € t+n. Nowt € K C N and n € N. Therefore m € t +n C N; i.e.
M C N. By a similar way we obtain N C M. Thus M = N. O

Let M be a hypermodule and X <Y < M, L < M. It is not difficult to see
that % + % = % In particular if A, B, C' are subhypermodules of M such that
_ A+C B+C _ M
Note. Let M, N be hypermodules and A, B be subhypermodules of M, N,
respectively. If f : M — N is a homomorphism, then it is clear to see that
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f(A) = {f(a)la € A} is a subhypermodule of N and f~}(B) = {z € M|f(z) € B}
is a subhypermodule of M.

Proposition 1.6 Let M, N be hypermodules and f : M — N a homomorphism.
For two subhypermodules A, B of M we have the following statements

1. fla+b) C f(A+ B) for everya € A and b € B.

2. f(A+ B)=f(A)+ f(B).
3. Ker(f)={m e M|f(m) =0} is a subhypermodule of M.

4. Im(f) ={f(m)lm € M} is a subhypermodule of N.

Proof.

1. Since a + b C A + B, simply we can conclude f(a +b) C f(A+ B).

2. Ttis clear that f(A) C f(A+B) and f(B) C f(A+B),so f(A)+f(B) C f(A+B).
Now let x € f(A+ B). Then there exists an element ¢ € A 4+ B such that

x = f(t). So there exist a € A and b € B such that t € a + b and hence x = f(t) €

fla+b) = f(a)+ f(b) C f(A)+ f(B). This complete the proof.

Numbers 3 and 4 follows immediately from last note. O

2 Small subhypermodules

In this section we introduce a class of subhypermodules and proceed to get some

suitable results about this kind of hypermodules.

Definition 2.1 Let M be a hypermodule and N < M, then N is called a small
subhypermodule of M (denoted by N < M) if N + K # M for all proper subhyper-
module K of M; or equivalently N + K = M implies K = M for every K < M.

For two hypermodules M, N, an epimorphism f : M — N is called a small
epimorphism if Ker(f) < M.

Example 2.2 1. Consider the hypermodule é on hyperring Z with trivial hy-

peroperations. Then % < é.

2. The hypermodule Z with trivial hyperoperations on Z has no small subhyper-
modules, because for every subhypermodule nZ of Z, there exists a subhyper-
module mZ # Z of 7Z such that nZ + mZ = 7Z; by getting a natural number
m # 1 such that (m,n) = 1.
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3. Consider the hypermodule % with trivial hyperoperations on hyperring Z.

127
3Z 7. _ 7 . 3Z 47, N/ s
We have 97 * 197 = 197 So neither 157 DOr 15> are small in 197 But it is

not difficult to see that % < %.

Proposition 2.3 Let M be a hypermodule and K a subhypermodule of M. Then

the following statements are equivalent
1. K< M;
2. The natural epimorphism 7 : M — M/K is a small epimorphism;

3. For every hypermodule N and every homomorphism f: N — M,

Im(f)+ K = M implies Im(f) = M.

Proof. Straightforward. O

Proposition 2.4 Let M be a hypermodule and X <Y, N be subhypermodules of
M. Then

1. Y<K Mifand only if X < M and Y/X < M/X.

2. N+Y < Mifand only if N < M and Y < M.

Proof. 1. Suppose that Y < M and X + L = M for some L < M. Since X <Y,
wehave M = X +L<Y+L<M.Hence M=Y +LandsoL=MasY < M.
Now suppose that Y/X + L/X = M/X for some L < M. Then M = L +Y by
Lemma 1.5. Thus M = L and so M/X =L/X;ie Y/X < M/X.

For converse suppose that X < M and Y/X < M/X. Let M =Y + K for some
K < M. Then

M _ Y+ K _ Y n K+ X

X X X X
Since Y/X <« M/X, then & = 5% and hence M = K + X by Lemma 1.5. Now
since X <« M, we have K = M. This complete the proof.

2. Suppose that N +Y < M. Since N < N+Y and Y < N +4Y, simply we
can conclude that N < M and Y <« M.
For converse suppose that N < M and Y <« M and M = L 4+ N 4+ Y for some
L < M. By hypothesis we have M = L + N and then M = L;ie. N+Y < M. I

The following corollary is an immediate result from Proposition 2.4.

Corollary 2.5 Let M be any hypermodule. Any finite sum of small subhypermod-

ules of M is again small in M.
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Proposition 2.6 Let M, N be hypermodules and K a subhypermodule of M. More-
over let f : M — N be a homomorphism. If K < M, then f(K) < N.

Proof. Suppose that f(K)+ L = N for some subhypermodule L of N. We first
show that K + f~1(L) = M. To see this, let m € M. Then f(m) € N = f(K)+ L
and so there exist elements k¥ € K and [ € L such that f(m) = f(k) + [. Hence
le f(m)— f(k) = f(m — k). This causes the existence an element t € m — k such
that | = f(t). Sincet em —k,som € t+k=f"1(1)+k C f~1(L) + K. Therefore
M C f~YL) + K and finally M = f~'(L) + K. Now since K < M, we have
fYL)= M.

This implies K < f~1(L) and then f(K) < L. Now N = f(K)+ L = L; i.e.
f(K) < N.

Corollary 2.7 Let M be hypermodule and K < N < M such that K < N. Then
K <M.

Proof. Consider the inclusion map ¢ : N — M and apply Proposition 2.6. (|

Proposition 2.8 Let M, N be hypermodules. Then an epimorphism g : M — N
is small if and only if for every homomorphism f, if gf is epimorphism, then f is

epimorphism.

Proof. Suppose that ¢ is a small epimorphism; i.e. Ker(g) < M. Let L be a
hypermodule and f : L — M be a homomorphism such that gf is epic. First we
show that Im(f) + Ker(g) = M. To see this let m € M, then g(m) € N. Since
gf is epic, there exists an element | € L such that g(m) = gf(l) = g(f(1)). So
0 € g(m)—g(f(l)) = glm — f(l)) and hence there exists an element z € m — f(I)
such that g(z) = 0; i.e. x € Ker(g). Now we have m € x + f(I) C Ker(g) + Im(f)
and consequently M = Im(f) + Ker(g).

Now since Ker(g) < M, we have Im(f) = M; i.e. f is epic.

For converse let Ker(g) + K = M for some subhypermodule K of M. Let ¢ : K —
M be the inclusion map, then gt : K — N is epic. Indeed let n € N. Since g is
epic, there exists m € M such that n = g(m). Since M = Ker(g)+ K, so there exist
x € Ker(g) and k € K such that m € k+x. Thus g(m) € g(k+ ) = g(k) + g(z) =
g(k)+0={g(k)}; i.e. g(m)=g(k)= g(e(k) = ge(k). This implies that g is epic.
Now by hypothesis ¢ must be epic and so K = Im(.) = M; ie. Ker(g) < M. O

Definition 2.9 Let M be a hypermodule and N, K subhypermodules of M.
We say K and N are independent, if K " N = 0. If N, K are independent then
N + K is denoted by N & K.

11
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Also a subhypermodule N of M is called a direct summand of M if M = N & N’
for some N’ < M.

A hypermodule M is called indecomposable if whenever M = My & Ms, then
M1 =0or M2 = 0.

Let M be any hypermodule and A, B and C be subhypermodules of M. Then
it need not be that AN (B+ C) = (AN B) + (AN C).(see the following example)

Example 2.10 Let M = {(x,y)|z,y € Z} with trivial hyperoperations on hyper-
ring Z. Also let

A={(z,2)|zr € Z},B = {(z,0)|x € Z} and C = {(0,z)|x € Z}.
Then A, B and C are subhypermodules of M and we have
AN(B+C)=A#0=(ANB)+(ANC).
In next proposition we add a condition that the above equality will be satisfied.

Lemma 2.11 (modularity law) Suppose that M is a hypermodule and A, B,C are
subhypermodules of M such that B < A. Then AN (B+C)=B+ (ANCQC).

Proof. Clearly B+ (ANC) C AN (B+C).

Conversely let x € AN(B+C). Thenx = a € b+cforsomea € A,b e Bandc €
C. Sowehavecea—bC A, and hence ce ANC. Butzeb+cC B+ANC.
Thus AN(B+C)C B+ (ANC). O

Proposition 2.12 Suppose that M = My ® My is a hypermodule where My, My are
subhypermodules of M. Then for each m € M there exist a unique element my € M

and a unique element my € My such that m € my + mo.

Proof. Obviously, for each m € M there exist m; € M; and mo € Ms, such
that m € mi1 + my. Now suppose that m € mq + mo and m € nj + ny for some
m,n1 € My and mg, ng € M. Thus we have 0 € m—m C (mq +mg) — (n1 +ng) =
(m1 —mn1) + (mg — ng) and so there exist z € m; —n; C M; and y € mg —ng C My
such that 0 € x +y. Hence x = —y € My N My =< 0 >; i.e, 0 € m; —n; and

0 € my — ngy that shows m; = n; and mg = no. O

Proposition 2.13 Let M be a hypermodule, N a direct summand of M and K a
small subhypermodule of M contained in N. Then K is small in N.

Proof. Suppose that M = N & N’ for some N’ < M. Also let N = K + L for some
L < N. Therefore M = (K+ L)® N = K + (L& N'). Since K < M, we conclude
M = L & N'. Now by modularity law we have N =L+ (NNN')=L+0=L; ie.
K < N. U
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Proposition 2.14 Let K1 < M| < M and Ko < My < M be hypermodules such
that M = My, ® Ms. Then

KieKo<Mi®d M iff Ki <M and Ko< Ms.

Proof. Suppose that K1 < M; and Ko < My, then by Corollary 2.7 we have
K1 < My & Mj and also Ko < M @ M,. Now by Proposition 2.4(ii), we deduce
that K1 @ Ko < My ® M.

For converse, suppose that K1 & Ko < My @ M,. By Proposition 2.4 (i), we have
K, < M; & My and Ky < My @ Ms. Now since K1 < M; and Ko < Ms, applying
Proposition 2.13 the proof will be completed. O

Proposition 2.15 Let M be a non-zero hypermodule and K be a small subhyper-
module of M. If % is indecomposable then so is M.

Proof. Suppose that M = M; & M>. Then
M o M+ K & My + K

K K K
Since M /K is indecomposable, either % = % or MQI?K = % and hence either
Mi+K =M or My+ K = M. Now since K <« M, we conclude that either My = M
or My = M, as required. O

Definition 2.16 Let M, N and K be hypermodules.
We say the sequence 0 — K i) M %5 N — 0 is an ezact sequence if, f is a

monomorphism, g is an epimorphism and Im(f) = Ker(g).

Proposition 2.17 Assume that the following diagram of hypermodules is commu-

tative such that both rows are exact sequences and « s epic;

0o — A L>B Sy — 0

la 1B by

o — & I op Lo oo
If g is small, then so is ¢'.

Proof. Suppose that Ker(¢') + L' = B’ for some L' < B’. Since « is epic, we have
(floa)(A) = f'(a(A)) = f/(A") = Im(f') = Ker(¢'). Now

Ker(g') = (f'oa)(A) = (Bof)(A) = B(f(A)) = B(Im(f)) = B(Ker(g)),

by the commutativity of diagram. So 3(Ker(g))+ L' = B’. From the last statement
we can show that Ker(g) + 3 ' (L') = 3~ (B’) = B. To see this let € B, then
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B(x) € B' = B(Ker(g)) + L' and so there exist y € Ker(g) and I’ € L’ such
that S(z) € B(y) +U'. Therefore I' € p(z) — B(y) = B(z — y), and hence there
exists an element t € x — y such that I’ = B(¢). Sot = g~1(I') € B~Y(L). Now
ret+yC B YL+ Ker(g). Hence B C 371(L') + Ker(g). Also it is clear that
B~HL') + Ker(g) C B. Since Ker(g) < B, we conclude that B = 87(L') and
hence L' = B’; that is Ker(g') < B'. O
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