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1. INTRODUCTION

All the graphs considered in this note are undirected graphs without loops or multiple edges. Notation
and terminology not defined here follow those in [1]. Let G be a graph of order n with e edges. We
use δ = δ(G) and ∆ = ∆(G) to denote the minimum and maximum degrees of G, respectively. The
independence number, denoted α = α(G), is defined as the size of the largest independent set in G. The
2 - degree, denoted t(v), of a vertex v in G is defined as the sum of degrees of vertices adjacent to v. We
use T = T (G) to denote the maximum 2 - degree of G. Obviously, T (G) ≤ (∆(G))2. A bipartite graph
G is called semiregular if all the vertices in the same vertex part of a bipartition of the vertex set of G
have the same degree. The eigenvalues µ1(G) ≥ µ2(G) ≥ ... ≥ µn(G) of the adjacency matrix A(G) of
G are called the eigenvalues of G. The spread, denoted Spr(G), of G is defined as µ1(G)− µn(G). The
energy, denoted Eng(G), of G is defined as

∑n
i=1 |µi(G)| (see [7]).

Several authors have obtained the upper bounds for the energy of a graph (see [5], [8], [9], [12], [13]). In
this note, we will present new upper bounds for the energy of a connected graph. The results are as follows.

Theorem 1. Let G be a connected graph with n ≥ 2 vertices and e edges. Then

Eng(G) ≤ 2
√
e+ 2

√
(n− α− 1)

(
e+

√
T dn

2
e bn

2
c − 2δ2α

n− α

)
with equality if and only if G is K1, 1 or K1, 2.

Obviously, Theorem 1 has the following corollary.

Corollary 1. Let G be a connected graph with n ≥ 2 vertices and e edges. Then

Eng(G) ≤ 2
√
e+ 2

√
(n− α− 1)

(
e+ ∆

√
dn

2
e bn

2
c − 2δ2α

n− α

)
with equality if and only if G is K1, 1.
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2. LEMMAS

In order to prove Theorem 1, we need the following lemmas. Lemma 1 below is Theorem 3.14 on
Pages 88 and 89 in [4].

Lemma 1. Let G be a graph. If the number of eigenvalues of G which are greater than, less than, and
equal to zero are p, q, and r, respectively, then

α ≤ r + min{ p, q },
where α is the independence number of G.

Lemma 2 below is Theorem 1.5 on Page 26 in [6].

Lemma 2. For a graph G with n vertices and e edges,

Spr(G) ≤ µ1 +
√

2e− µ2
1 ≤ 2

√
e.

Equality holds throughout if and only if equality holds in the first inequality; equivalently, if and only if
e = 0 or G is Ka, b for some a, b with e = ab and a+ b ≤ n.

Lemma 3 below is obvious.

Lemma 3. If x ≥ 0 and y ≥ 0, then
√
x+
√
y ≤

√
2(x+ y) with equality if and only if x = y.

Lemma 4 below is Corollary 3.4 on Page 2731 in [10].

Lemma 4. Let G be a graph. Then Spr(G) ≥ 2δ
√

α(G)
n−α(G) . If equality holds, then G is a semiregular

bipartite graph.

Lemma 5 is Theorem 1 on Page 5 in [2].

Lemma 5. Let G be a connected graph. Then µ1 ≤
√
T (G) with equality if and only if G is either a

regular graph or a semiregular bipartite graph.

Lemma 6 follows from Proposition 2 on Page 174 in [3].

Lemma 6. Let G be a graph. Then µn ≥ −
√
dn2 e b

n
2 c with equality if and only if G is Kdn2 e,b

n
2 c.

3. PROOFS

Next, we will present proofs for Theorem 1.

Proof of Theorem 1. Let µ1 ≥ µ2 ≥ ... ≥ µp be the p positive eigenvalues of G and let ρq ≥ ρq−1 ≥
... ≥ ρ1 be the q negative eigenvalues of G. Then G has n − p − q eigenvalues which are equal to zero.
From Lemma 1, we have

α ≤ (n− p− q) + min{ p, q }.
Thus α ≤ (n − p − q) + q and α ≤ (n − p − q) + p. Namely, p ≤ n − α and q ≤ n − α. Since∑p
i=1 µi +

∑q
i=1 ρi = 0, we have that

Eng(G) = 2

p∑
i=1

µi = 2

q∑
i=1

|ρi|.



From Cauchy - Schwarz inequality, we have that

Eng(G)

2
=

p∑
i=1

µi ≤ µ1 +

√√√√(p− 1)

p∑
i=2

µ2
i = µ1 +

√√√√(p− 1)

(
p∑
i=1

µ2
i − µ2

1

)
.

Similarly, we have that

Eng(G)

2
=

q∑
i=1

|ρi| ≤ |ρ1|+

√√√√(q − 1)

q∑
i=2

ρ2i = |ρ1|+

√√√√(q − 1)

(
q∑
i=1

ρ2i − ρ21

)
.

Hence we get that

Eng(G) =
Eng(G)

2
+
Eng(G)

2

≤ µ1 +

√√√√(p− 1)

(
p∑
i=1

µ2
i − µ2

1

)
+ |ρ1|+

√√√√(q − 1)

(
q∑
i=1

ρ2i − ρ21

)
.

Then by Lemmas 2 and 3 it follows that

Eng(G) ≤ 2
√
e+
√
n− α− 1


√√√√( p∑

i=1

µ2
i − µ2

1

)
+

√√√√( q∑
i=1

ρ2i − ρ21

) 

≤ 2
√
e+
√
n− α− 1

√√√√2

(
p∑
i=1

µ2
i − µ2

1 +

q∑
i=1

ρ2i − ρ21

)
.

Since
∑p
i=1 µ

2
i +

∑q
i=1 ρ

2
i = the trace of A2 = the sum of diagonal entries of A2 = the sum of degrees of

vertices in G = 2e, we get that

Eng(G) ≤ 2
√
e+

√
2(n− α− 1)(2e− µ2

1 − ρ21)

= 2
√
e+

√
2(n− α− 1)(2e− (µ1 − ρ1)2 − 2µ1ρ1).

Then by Lemmas 4, 5, and 6 we get that

Eng(G) ≤ 2
√
e+

√
2(n− α− 1)

(
2e+ 2

√
T dn

2
e bn

2
c − 4δ2α

n− α

)

= 2
√
e+ 2

√
(n− α− 1)

(
e+

√
T dn

2
e bn

2
c − 2δ2α

n− α

)
.

If G is K1, 1 or K1, 2, it is trivial to verify that

Eng(G) = 2
√
e+ 2

√
(n− α− 1)

(
e+

√
T dn

2
e bn

2
c − 2δ2α

n− α

)
.

If

Eng(G) = 2
√
e+ 2

√
(n− α− 1)

(
e+

√
T dn

2
e bn

2
c − 2δ2α

n− α

)
,

then, from the proofs above, we have that p = q = n − α and G = Kdn2 e,b
n
2 c. Since G is connected, its

adjacency matrix is irreducible. From Perron - Frobenius theorem, we have that p = 1 (see [11]). Thus
α = n− 1. Hence G must be K1, 1 or K1, 2. �
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