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Abstract. In this paper we obtain an extension of the concept of Hutchinson measure
(which is the unique fixed point of a contraction on the set of normalized Borel measures
on a compact metric space) related to an iterated function system. Our extension means
that we consider vector measures (instead of normalized Borel measures) and, also, an
uncountable iterated function system instead of a finite one, as in the case of Hutchinson
measure.
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1. Introduction

The Hutchinson measure (also called fractal measure) is related to the attractor of an iterated function
system. If (T , d) is a compact metric space, an iterated function system (I.F.S.) is a set (ωi)

n
i=1 of

contractions defined and taking values on T .
If we consider the complete metric space (K(T ) , δ ) , where δ is the Hausdorff-Pompeiu metric and

K(T ) is the set of all nonempty compact subsets of T one can prove that the map S : K(T ) −→ K(T ),
S(A) =

⋃n
i=1 ωi(A), is also a contraction.

The unique fixed point F of S is called the attractor of the I.F.S. Using the I.F.S. we can consider the
so called Markov operator, defined and taking values in the set of all normalized Borel measures. This
set, with a certain metric, becomes a complete metric space and the Markov operator is a contraction
(see [6], pp. 131-133).

The unique fixed point of the Markov operator is called Hutchinson measure. This measure has the
interesting property that its support is exactly the attractor of the I.F.S.

A first extension of the Hutchinson measure was given in [4] to the case of vector measures. A second
extension was given in [5], when we considered a countable iterated function system and vector measures.
In this paper we consider again the case of vector measures, but an uncountable iterated function system.

The present paper can be viewed as a continuation of my Ph.D. thesis (unpublished).

2. Preliminaries

In this section we will recall some basic facts. For more details, one can consult [1]-[4] and [6].
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2.1. The sesquilinear vector integral.

Let (T, d) be a compact metric space and let
(
X, <>

)
be a Hilbert space over the field K (either

K = R or K = C ).
A function f : T −→ X is called simple function if there exists a partition (Ai)1≤i≤n of T , with

Borel sets, such that f =
∑n
i=1 ϕAi xi, where ϕAi is the characteristic function of the set Ai and

xi ∈X , i∈
{

1 , . . . , n
}
. We denote by S(X) the set of all simple functions.

A function f : T −→ X is called totally measurable function if there exists a sequence
(
fn
)
n
⊂

S(X) such that lim
n→∞

fn = f , the convergence being uniform. We denote by TM(X) the set of all

totally measurable functions. The set TM(X) is the closure of the set S(X) in the topology given by
the norm ‖ f ‖∞ = max

t∈T
| f(t) |.

We also denote C(X) = { f : T −→ X
∣∣∣ f is continuous } , and obviously C(X) ⊂ TM(X).

Let B be the set of Borel subsets of T . A function µ : B −→ X is called vector measure if µ is

σ− additive, that is, µ
( ∞⋃
n=1

An
)

=

∞∑
n=1

µ (An) , for any sequence
(
An
)
n
⊂ B , with Ai

⋂
Aj = ∅ ,

for i 6= j .

Let µ : B −→ X be a vector measure and A ∈ B . We call the variation of µ on A
the number, denoted by |µ | (A) , defined as:

|µ | (A) = sup
{ ∑

i

‖µ(Ai) ‖
∣∣∣ (Ai)i is a finite partition of A with Borel sets

}
.

One can prove that |µ | : B −→ R+ is a positive measure (see [1] , p. 114).

Let µ : B −→ X be a vector measure . If |µ| (T ) < ∞ , we say that µ has bounded
variation . We denote by cabv(X) the set of vector measures with bounded variation. One can prove
the following theorem (see [1] , pag. 156).

Theorem 2.1. a) The application ‖ ‖ : cabv(X) −→ [ 0 , ∞ ) , ‖µ ‖ def
= |µ | (T ) is a norm on

cabv(X) , the called variational norm.

b)
(
cabv(X) , ‖ ‖

)
is a Banach space.

Let f =

n∑
i=1

ϕAi xi be a simple function, µ ∈ cabv(X) . We define:∫
f dµ

def
=

n∑
i=1

< µ(Ai) , xi > .

Remark. Obviously,
∣∣∣ ∫f dµ

∣∣∣ 6 n∑
i=1

‖µ(Ai) ‖ ‖xi ‖ 6 ‖f‖∞ ‖µ ‖ .

These inequalities show that the application f 7−→
∫
f dµ is continuous and has an unique uniform

continuous extension to the set TM(X) ( the closure of S(X) with respect to the topology given by
‖ ‖∞ ).

Let f be a function such that f ∈ TM(X) and
(
fn
)
n
⊂ S(X) such that fn

u−→ f . We

define

∫
f dµ = lim

n→∞

∫
fn dµ , and the limit does not depend on the sequence

(
fn
)
n

which converges

uniformly to f .

2.2. Norms and topologies on measure spaces.



We denote by BL(X) the set of all Lipschitz functions f : T −→ X . On this set we introduce the
norm: ‖ f ‖BL = ‖ f ‖∞ + ‖ f ‖L, where ‖ f ‖L is the Lipschitz constant of f . For the proofs of the
results given in this section one can see [3].

We also denote: BL1(X) =
{
f ∈ BL(X)

∣∣∣ ‖ f ‖BL 6 1
}

.

For any µ ∈ cabv(X) , we define: ‖µ ‖MK = sup
{ ∣∣ ∫f dµ

∣∣ ∣∣∣ f ∈ BL1(X)
}

.

Then the application µ 7−→ ‖µ‖MK is a norm on cabv(X) and ‖µ‖MK 6 ‖µ‖ .
The norm defined above is called Monge - Kantorovich - type norm (in the following we will call it, in

short, the Monge - Kantorovich norm).

Let a > 0. We will denote Ba(X) =
{
µ ∈ cabv(X)

∣∣∣ ‖µ ‖ 6 a
}

. It can be proved the following

result: For any a > 0 and n ∈ N , the set Ba(K
n
) equipped with the metric generated by the

Monge - Kantorovich norm is a compact (hence, complete) metric space.

For any v ∈ X , we denote cabv(X , v ) =
{
µ ∈ cabv(X)

∣∣∣ µ(T ) = v
}

. Obviously, for any

A ⊂ cabv(X , v ) , we have:

A − A
def
=
{
µ − ν

∣∣∣ µ , ν ∈ A
}
⊂ cabv(X , 0 ) .

We define: L1(X) =
{
f : T → X

∣∣∣ f is a Lipschitz function and ‖ f ‖L 6 1
}

.

For any µ ∈ cabv(X , 0 ) , we denote ‖µ ‖∗MK = sup
{∣∣∫ fdµ

∣∣ | f ∈ L1(X)
}

. Then the application

µ 7−→ ‖µ ‖*MK is a norm on cabv(X , 0 ) and we have: ‖µ ‖MK 6 ‖µ ‖*MK 6 ‖µ ‖ diam(T ). This
norm is called the modified Monge - Kantorovich norm.

For any v ∈ X and a > 0 we denote Ba(X , v ) = { µ ∈ Ba(X) | µ(T ) = v } .

One can prove the following theorem: For any v ∈ X , a > 0 and n ∈ N* , the set Ba(K
n
, v )

equipped with the metric given by the modified Monge - Kantorovich norm is a compact (hence, complete)
metric space.

2.3. Fractal vector measures.

Let m ∈ N* . We consider the linear and continuous operators Ri : X → X , i = 1 , 2 , . . . , m ,

and the iterated function system
(
ωi
)n
i=1

, that is, ωi : T −→ T is a contraction of ratio ri < 1 ,
for any i = 1 , 2 , . . . , m . We define the Markov - type operator :

H : cabv(X) −→ cabv(X) , H(µ) =

m∑
i=1

Ri ◦ µ(ω
−1
i ),

that means that, for any Borel subset A ⊂ T , H(µ)(A) =

m∑
i=1

Ri

(
µ
(
ω
−1
i (A)

) )
.

It can be proved (see [4]) that:
a) The Markov - type operator is correctly defined: H(µ) ∈ cabv(X) for any µ ∈ cabv(X) .

b) Let us consider the Banach space
(
cabv(X) , ‖ ‖

)
. Then, H is linear and continuous and ‖H ‖0 6

m∑
i=1

‖Ri ‖0 (where we denote by ‖ ‖0 the operatorial norm).



Theorem 2.2. (change of variable formula) For any f ∈ C(X) , we have:∫
f dH(µ) =

∫
g dµ , where g =

m∑
i=1

R*
i ◦ f ◦ ωi ,

R*
i being the adjoined operator of Ri.

Proof. Using additivity properties, it will suffice to prove that for any R ∈ L(X) , for any continuous
function ω : T → T and for any f ∈ C(X) , we have:

(2.1)

∫
f dH(R)(µ) =

∫
g dµ,

where H(R) ∈ cabv(X) is given by H(R)(µ) = R ◦ ω(µ) and g = R
∗ ◦ f ◦ ω .

We construct the canonical sequence for f (see [2]):

fm =

K(m)∑
i=1

ϕBmi f(tmi ) , where tmi ∈ Bmi .

It is obvious that ‖ fm ‖∞ 6 ‖ f ‖∞ and that (C
m

i )16 i6K(m) is a partition of T , where C
m

i =

ω−1(Bmi ) . We take vmi ∈ C
m

i such that ω(vmi ) = tmi . We have :∫
fm dH(R)(µ) =

K(m)∑
i=1

< f(tmi ) , H(R)(µ)(Bmi ) >

=

K(m)∑
i=1

< f(tmi ) , R
(
µ
(
ω−1(Bmi )

))
>

=

K(m)∑
i=1

< f(tmi ) , R
(
µ(Cmi )

)
>

=

K(m)∑
i=1

<
(
R
∗ ◦ f

)
(tmi ) , µ

(
Cmi

)
>

=

K(m)∑
i=1

<
(
R
∗ ◦ f

)(
ω(vmi )

)
, µ
(
Cmi

)
>

(2.2) =

K(m)∑
i=1

<
(
R∗ ◦ f ◦ ω

)(
vmi
)
, µ
(
Cmi

)
>.

For any m ∈ N , we consider the simple function gm =

K(m)∑
i=1

ϕCmi
(
R
∗ ◦ f ◦ ω

)(
vmi
)

.

Then, from (2.2) we obtain :

(2.3)

∫
fm dH(R)(µ) =

∫
gm dµ.

We also have : gm
u−→
m

g = R
∗ ◦ f ◦ ω. Indeed, for any t ∈ T one can find an unique i ∈

{ 1 , 2 , . . . , K(m) } such that t ∈ Cmi . Therefore :

‖ gm(t) − g(t) ‖ = ‖R∗
(
f
(
ω(vmi )

) )
− R

∗
(
f
(
ω(t)

) )
‖ =



= ‖R∗
(
f
(
ω(vmi )

)
− f

(
ω(t)

) )
‖ 6

6 ‖R∗ ‖0 ‖ f
(
ω(vmi )

)
− f

(
ω(t)

)
‖ =

= ‖R ‖0 ‖ f
(
ω(vmi )

)
− f

(
ω(t)

)
‖.

However ω(vmi ) = tmi ∈ B
m
i , ω(t) ∈ B

m
i and B

m
i ⊂ f

−1(
B( ymi ,

1

m
)
)

(using the way of

construction of the canonical sequence).

Hence f(tmi ) = f
(
ω(vmi )

)
∈ B

(
ymi ,

1

m

)
, f
(
ω(t)

)
∈ B

(
ymi ,

1

m

)
, and this implies that

‖ f
(
ω(vmi )

)
− f

(
ω(t)

)
‖ 6 2

m
.

Therefore, ‖gm(t) − g(t)‖ ≤ ‖R‖0 ·
2

m
, that proves that gm

u−→
m

g, and, from that,

∫
g dµ =

lim
m

∫
gm dµ .

Using the equality

∫
f dH(R)(µ) = lim

m

∫
fm dH(R)(µ) , from (2.3), and taking the limit when m −→

∞ , we obtain (2.1). �

The following result can be proved: We consider the space (cabv(Kn) , ‖ ‖MK ) and suppose
m∑
i=1

‖Ri ‖0 (1 + ri) < 1 . Let a > 0, µ0 ∈ cabv(Kn) and P : cabv(Kn) −→ cabv(Kn) ,

where P (µ) = H(µ) + µ
0

. Let, also, ∅ 6= A ⊂ Ba(K
n
) , weak -* closed, such that P (A) ⊂ A

and π : A −→ A , π(µ) = P (µ) . Then π is a contraction on A , with the ratio ‖π ‖L 6
m∑
i=1

‖Ri ‖0 (1 + ri) . Consequently, there exists an unique measure µ* ∈ A such that π(µ* ) = µ* .

This measure µ* is called invariant vector measure or fractal vector measure.

Remark. a) It can be proved (see [3]) that the weak -* topology on Ba(K
n
) is the same with the

topology given by ‖ ‖MK on Ba(K
n
) . But Ba(K

n
) is compact in the weak -* topology, so is compact

(hence, complete) in the topology given by ‖ ‖MK . If A ⊂ Ba(K
n
) is weak -* closed, we conclude

that A is weak -* compact in this topology, hence is compact (and complete) in the topology given by
‖ ‖MK .

b) Theorems similar to the previous result can be proved for
(
cabv(K

n
, 0) , ‖ ‖*MK

)
and for

(
cabv(X) , ‖ ‖

)
, when X is an arbitrary Hilbert space (see [4]).

3. Results

3.1. An integral for vector functions with respect to Lebesgue measure.

Let a , b ∈ R , a < b , λ the Lebesgue measure on [ a , b ] and X a Banach space.
Notations:

• S[ a , b ](X) =
{
f : [ a , b ] −→ X

∣∣∣ f is a simple function
}

• TM [ a , b ](X) =
{
f : [ a , b ] −→ X

∣∣∣ (∃) (fn)n ⊂S[ a , b ](X) such that fn
u−→ f

}



Definition 3.1. For f ∈ S[ a , b ](X) , f =

m∑
i=1

ϕAi xi , where (Ai)16 i6m is a partition with Borel sets

of [ a , b ] and xi ∈ X , we define

∫
[ a , b ]

f dλ
def
=

m∑
i=1

λ (Ai)xi .

Obviously,
∥∥ ∫

[ a , b ]

f dλ
∥∥ 6

m∑
i=1

‖xi ‖λ (Ai) 6 ‖ f ‖∞ (b − a).

From these inequalities we deduce that the application f 7−→
∫

[ a , b ]

f dλ is continuous and, conse-

quently, it has an extension to S[ a , b ](X) = TM [ a , b ](X) . Namely, if (fn)n ⊂S[ a , b ](X) and fn
u−→ f ,

we define
∫

[a,b ]

fdλ = lim
n→∞

∫
[a, b]

fndλ, and the limit is the same for all sequences (fn)n uniformly conver-

gent to f .

3.2. The Markov-type operator.

In this section X is a Hilbert space and (T , d) is a compact metric space.
For any α ∈ [ a , b ] , we consider:

• Rα : X −→ X , linear and continuous;

• ωα : X −→ X , contractions of ratio rα < 1 .

We suppose that:

i) The application α 7−→ Rα is continuous on [ a , b ] ;

ii) For any µ ∈ cabv(X) , the application α 7−→ µ ◦ ω
−1
α is continuous on [ a , b ] ;

iii) For any f ∈ C(X) , the application α 7−→ f ◦ ωα is continuous on [ a , b ] ;

iv) The application α 7−→ rα is measurable.

Remark. For the conditions i) - iv) , we consider the topologies:
a) on [a, b], the trace of the topology given on R by the canonical metric:

dR(x , y) = |x − y |;
b) on L (X) (the space of linear and continuous operators on X) : the topology given by the operatorial
norm ;
c) on cabv(X) : the topology given by the variational norm ;
d) on C(X) : the topology given by the norm ‖ ‖∞ :

‖ f ‖∞ = sup
t∈T
‖ f(t) ‖ , (∀) f ∈ C(X).

Definition 3.2. For any µ ∈ cabv(X) , we define H(µ) : B −→ X via:

H(µ)(A) =

∫
[ a , b ]

Rα

(
µ
(
ω
−1
α (A)

) )
dλ,

for any A ∈ B.



We will use the notation: H(µ)
not
==

∫
[ a , b ]

(Rα ◦ µ ◦ ω
−1
α ) dλ.

Theorem 3.3. We consider
(
cabv(X) , ‖ ‖

)
. Then, for any µ ∈ cabv(X) , H(µ) ∈ cabv(X) , the

function µ −→ H(µ) is linear and continuous, and ‖H ‖0 6
∫

[ a , b ]

‖Rα ‖0 dλ .

Proof. Let (Aj)16 j6n a partition of T with Borel sets. We have:

n∑
j=1

‖H(µ)(Aj) ‖ =

n∑
j=1

∥∥∥ ∫
[ a , b ]

Rα

(
µ
(
ω
−1
α (Aj)

) )
dλ
∥∥∥

6
n∑

j=1

( ∫
[a, b]

‖Rα‖0 ‖µ
(
ω
−1
α (Aj)

)
‖ dλ

)

=

∫
[ a , b ]

( n∑
j=1

‖Rα‖0 ‖µ
(
ω
−1
α (Aj)

)
‖
)

dλ

=

∫
[a,b]

(
‖Rα‖0

n∑
j=1

‖µ
(
ω
−1
α (Aj)

)
‖
)

dλ

6 |µ| (T )

∫
[ a , b ]

‖Rα‖0 dλ

= ‖µ ‖
∫

[ a , b ]

‖Rα‖ dλ .

Taking the supremum with respect to all the finite partitions of T with Borel sets, we obtain

|H(µ) |(T ) 6 ‖µ ‖
( ∫
[ a , b ]

‖Rα‖0 dλ
)

.

Hence H(µ) ∈ cabv(X) and ‖H(µ) ‖ 6
( ∫
[ a, b]

‖Rα‖0 dλ
)
‖µ ‖ . We conclude that H is linear and con-

tinuous and ‖H ‖0 6
∫

[a,b]

‖Rα‖ dλ. �

Theorem 3.4. (change of variable formula)

For any f ∈ C(X) and µ ∈ cabv(X) we have

∫
f dH(µ) =

∫
g dµ , where g : T −→ X ,

g(t) =

∫
[ a , b ]

R*
α

(
f
(
ωα(t)

) )
dλ .



Proof. For any n ∈ N* we consider the partition (Bi)16 i6n of the interval [ a , b ] , where

Bi = [xi− 1 , xi ] , xi = a + i
b − a

n
. Obviously, λ(Bi ) =

b − a

n
. In each set Bi we

choose αi , arbitrarily, fixed. According to Theorem 2.2 we have:

∫
f dHn(µ) =

∫
gn dµ , where

Hn(µ) =
b − a

n

n∑
i=1

Rαi ◦ µ ◦ ω
−1
αi , gn =

b − a

n

n∑
i=1

R*
αi ◦ f ◦ ωαi .

It will be sufficient to prove that:
A) Hn(µ) −→ H(µ) in cabv(X) ;

B) gn
u−→ g in TM(X).

A) Let α ∈ [ a , b ] ; there exists i ∈ {1, . . . , n} such that α ∈ Bi . Let also (Aj)16 j6m be a
partition of T with Borel sets. We denote:

S not
==

m∑
j=1

∥∥∥ ∫
[ a , b ]

Rα

(
µ
(
ω
−1
α (Aj)

) )
dλ − b − a

n

n∑
i=1

Rαi

(
µ
(
ω
−1
αi (Aj)

) ) ∥∥∥ .
We have:

S =

m∑
j=1

∥∥∥ n∑
i=1

{ ∫
Bi

[
Rα

(
µ
(
ω
−1
α (Aj)

) )
− Rαi

(
µ
(
ω
−1
αi (Aj)

) ) ]
dλ

}∥∥∥
6

m∑
j=1

{
n∑

i=1

[ ∫
Bi

(∥∥∥Rα(µ(ω−1α (Aj)
) )
− Rα

(
µ
(
ω
−1
αi (Aj)

) ) ∥∥∥
+
∥∥∥Rα(µ(ω−1αi (Aj)

) )
− Rαi

(
µ
(
ω
−1
αi (Aj)

) ) ∥∥∥)dλ

]}

6
m∑
j=1

{
n∑

i=1

[ ∫
Bi

‖Rα ‖0
∥∥∥µ(ω−1α (Aj)

)
− µ

(
ω
−1
αi (Aj)

) ∥∥∥dλ

(3.1) +

∫
Bi

‖Rα − Rαi ‖
∥∥∥µ(ω−1α (Aj)

) ∥∥∥dλ

]}
.

From iv) and ii) , we deduce:
10) (∀) ε > 0 , (∃) δε > 0 such that for |α − α0 | < δε , ‖Rα − R0 ‖ < ε .

20) (∀) ε > 0 , (∃) ηε > 0 such that for |α − α0 | < ηε , ‖µ ◦ ω
−1
α − µ ◦ ω

−1
α0
‖ < ε .

Let ε > 0 and n ∈ N such that
b − a

n
< min( δε , ηε ) . Because |α − αi | <

b − a

n
, we have,

using (3.1):

S 6
n∑

i=1

[ ∫
Bi

∥∥∥µ ◦ ω−1α − µ ◦ ω
−1
αi

∥∥∥ ‖Rα ‖0 dλ + ‖µ ‖
∫
Bi

‖Rα − Rαi ‖0 dλ

]

6 ε

∫
[ a , b ]

‖Rα ‖0 dλ + ε ‖µ‖ ( b − a )
not
== εM



where M =

∫
[ a , b ]

‖Rα ‖0 dλ + ‖µ‖ ( b − a ) .

Taking the supremum for all the finite partitions of T with Borel sets, we conclude that Hn(µ) −→
H(µ) in cabv(X) .

B) Let t ∈ T . We have:

‖ gn(t) − g(t) ‖ =
∥∥∥ ∫
[ a , b ]

R*
α

(
f
(
ωα(t)

) )
dλ − b − a

n

n∑
i=1

R*
αi

(
f
(
ωαi(t)

) ) ∥∥∥
=
∥∥∥ n∑
i=1

{∫
Bi

[
R*
α

(
f
(
ωα(t)

) )
− R*

αi

(
f
(
ωαi(t)

) ) ]
dλ
}∥∥∥

6
n∑

i=1

[ ∫
Bi

∥∥∥R*
α

(
f
(
ωα(t)

) )
− R*

α

(
f
(
ωαi(t)

) ) ∥∥∥dλ

+

∫
Bi

∥∥∥R*
α

(
f
(
ωαi(t)

) )
− R*

αi

(
f
(
ωαi(t)

) ) ∥∥∥ dλ

]

6
n∑

i=1

[ ∫
Bi

‖Rα ‖0
∥∥∥( f ◦ ωα − f ◦ ωαi

)
(t)
∥∥∥︸ ︷︷ ︸

6 ‖ f ◦ωα − f ◦ωαi ‖∞

dλ

(3.2) +

∫
Bi

‖Rα − Rαi ‖0 ‖ f
(
ωαi(t)

)
‖︸ ︷︷ ︸

6 ‖ f ‖∞

dλ

]
.

Because |α − αi | <
b − a

n
, for n ∈ N big enough, from iii) we have ‖ f ◦ ωα − f ◦ ωαi ‖ < ε .

Hence, using (3.2), we obtain :

‖ gn(t) − g(t) ‖ 6 ε
( ∫

[ a , b ]

‖Rα‖0 dλ + ‖ f ‖∞ ( b − a )
)
, (∀) t ∈ T ,

and so gn
u−→ g . �

Theorem 3.5. Let f ∈ L1(X) and g as in Theorem 3.4 Then g is a Lipschitz function and ‖ g ‖L 6∫
[a,b]

‖Rα‖0 rα dλ .

Proof. First we remark that the function α 7−→ ‖Rα‖0 rα is Lebesgue integrable. This results from
the fact that the function is measurable (as a product of measurable functions) and is less than the
integrable function α 7−→ ‖Rα‖0 .

Let x , y ∈ T . We have:

‖ g(x) − g(y) ‖ =
∥∥∥ ∫
[ a , b ]

R*
α

[
f
(
ωα(x)

)
− f

(
ωα(y)

) ]
dλ
∥∥∥ 6



6
∫

[ a , b ]

‖R*
α ‖0 ‖ f

(
ωα(x)

)
− f

(
ωα(y)

)
‖ dλ 6

6
∫

[ a , b ]

‖Rα ‖0 ‖ωα(x) − ωα(y) ‖ dλ 6

6

( ∫
[ a , b ]

‖Rα ‖0 rα dλ

)
d(x , y) .

Then g is a Lipschitz function and ‖ gL ‖ 6
∫

[ a , b ]

‖Rα ‖0 rα dλ . �

Theorem 3.6. We consider the space
(
cabv(X) , ‖ ‖MK

)
. Then H is linear and continuous, and

‖H ‖0 6
∫

[ a , b ]

‖Rα‖0 (1 + rα ) dλ.

Proof. Let g be as in Theorem 3.4 where f ∈ BL1(X) . For any t ∈ T ,

‖g(t)‖ 6
∫

[ a , b ]

‖R*
α‖0 ‖ f

(
ωα(t)

)
‖︸ ︷︷ ︸

6 ‖ f ‖∞ 6 1

dλ 6
∫

[ a , b ]

‖Rα‖0 dλ.

Using Theorem 3.5 we have:

‖g‖BL = ‖g‖∞ + ‖g‖L 6
∫

[ a , b ]

‖Rα‖0 (1 + rα ) dλ.

From Theorem 3.4 we know that:∣∣∣ ∫ fdH(µ)
∣∣∣ =

∣∣∣ ∫ g dµ
∣∣∣ ≤︸︷︷︸
(see [3])

‖g‖BL · ‖µ‖MK

6
( ∫

[a,b]

‖Rα‖0 (1 + rα ) dλ
)
‖µ‖MK

.
Taking the supremum for all the functions from BL1(X) we obtain :

‖H(µ)‖MK 6
( ∫

[ a , b ]

‖Rα‖0 (1 + rα ) dλ
)
‖µ‖MK .

Hence, ‖H‖0 6
∫

[ a , b ]

‖Rα‖0 (1 + rα ) dλ . �

Theorem 3.7. Let us consider the space
(
cabv(X , 0) , ‖ ‖*MK

)
. Then:

a) For any µ ∈ cabv(X , 0) , H(µ) ∈ cabv(X , 0) ;

b) We define H1 : cabv(X , 0) −→ cabv(X , 0) , H1(µ) = H(µ) .



Then H1 is linear and continuous and ‖H1‖0 6
∫

[ a , b ]

‖Rα‖0 rα dλ .

Proof. a) Let µ ∈ cabv(X , 0) .

H(µ)(T ) =

∫
[ a , b ]

Rα

(
µ
(
ω
−1
α (T )

) )
dλ =

∫
[ a , b ]

Rα
(
µ (T )︸ ︷︷ ︸

= 0

)
dλ = 0 =⇒ H(µ) ∈ cabv(X , 0) .

b) Let f ∈ L1(X) and g be as in Theorems 3.4 and 3.5. Using Theorem 3.5, we have ‖ g ‖L 6∫
[ a , b ]

‖Rα ‖0 rα dλ . We can write :

∣∣∣ ∫f dH(µ)
∣∣∣ =

∣∣∣ ∫g dµ
∣∣∣ 6︸︷︷︸
(see [3])

‖g‖L · ‖µ‖*MK 6
( ∫

[ a , b ]

‖Rα‖0 rα dλ
)
‖µ‖*MK ,

and taking the supremum for all f ∈ L1(X) , we obtain that :

‖H(µ) ‖*MK 6
( ∫

[a,b]

‖Rα‖0 rα dλ
)
‖µ ‖*MK .

Hence ‖H1 ‖0 6
∫

[ a , b ]

‖Rα‖0 rα dλ . �

3.3. Fractal invariant measures.

Theorem 3.8. (Fractal Vector Measure for ‖ ‖MK)

Let us consider the space
(
cabv(K

n
) , ‖ ‖MK

)
. We suppose that

∫
[ a , b ]

‖Rα‖0 ( 1 + rα ) dλ < 1 .

Let a > 0 and µ
0
∈ cabv(K

n
) . We define

P : cabv(K
n
) −→ cabv(K

n
) , P (µ) = H(µ) + µ

0
.

Let ∅ 6= A ⊂ Ba(K
n
) , weak -* closed, such that P (A) ⊂ A. Then the function π : A −→

A , π(µ) = P (µ) , is a contraction on A with the ratio ‖π‖L 6
∫

[ a , b ]

‖Rα‖0 ( 1 + rα ) dλ , for the

metric generated by ‖ ‖MK on A . Consequently, there exists a unique measure µ* ∈ A , such that

π(µ*) = µ*.

Proof. The set A , being weak -* closed in Ba(K
n
) , is compact, hence complete in this topology. But

the weak -* topology coincides with the one given by ‖ ‖MK on Ba(K
n
) (see [3]). So A is complete in

the topology given by ‖ ‖MK .

Let µ1 , µ2 ∈ A . We have :

‖π(µ1) − π(µ2)‖ = ‖H(µ1) − H(µ2)‖ 6 ‖H‖0 ‖µ1 − µ2‖.

By using Theorem 3.6 we deduce that

‖π‖L 6 ‖H‖0 6
∫

[ a , b ]

‖Rα‖0 ( 1 + rα ) dλ < 1.



Hence π is a contraction on A . Using the contraction principle, there exists a unique measure
µ* ∈ A with π(µ*) = µ* . �

Theorem 3.9. (Fractal Vector Measure for ‖ ‖*MK)

Let us consider the space
(
cabv(K

n
, 0) , ‖ ‖*MK

)
. We suppose that :

∫
[ a , b ]

Rα dλ = 1
K
n
(
that

means : (∀)x ∈ K
n
,

∫
[ a , b ]

Rα(x) dλ = x
)

and

∫
[ a , b ]

‖Rα‖0 rα dλ < 1 .

Let a > 0 , v ∈ K
n

such that ‖ v ‖ 6 a. We consider the set ∅ 6= A ⊂ Ba(K
n
, v) weak -* closed,

such that H(A) ⊂ A , and the function π : A −→ A , π(µ) = H(µ). Then π is a contraction of

ratio ‖π‖L 6
∫

[ a , b ]

‖Rα‖0rα dλ , for the metric generated by ‖ ‖*MK on A. Consequently, there exists a

unique measure µ* ∈ A such that π(µ*) = µ* .

Proof Let H1 : cabv(K
n
, 0) −→ cabv(K

n
, 0) , H1(µ) = H(µ) . According to Theorem 3.5 we have:

‖H1‖0 6
∫

[a,b]

‖Rα‖ rα dλ . Similar to Theorem 3.8, we deduce :

‖π‖L 6 ‖H1‖0 6
∫

[ a , b ]

‖Rα‖ rα dλ < 1,

hence π is a contraction for ‖µ‖*MK .

But (see [3]) the space
(
Ba(K

n
, v) , d

MK
∗
)

is compact (where d
MK
∗ is the metric generated by

‖ ‖*MK ) and A , being weak -* closed in Ba(K
n
, v) is closed in the topology given by d

MK∗ , so is
compact in this topology. Hence (A , d

MK
∗) is a complete metric space. Using the contraction principle,

there exists a unique measure µ* ∈ A such that π(µ*) = µ* . �

Remarks. a) The condition

∫
[ a , b ]

Rα dλ = 1
K
n ensures that, for any µ ∈ cabv(K

n
, v) , we

have H(µ) ∈ cabv(K
n
, v) . Indeed ,

H(µ)(T ) =

∫
[ a , b ]

Rα

(
µ
(
ω
−1
α (T )

) )
dλ =

∫
[ a , b ]

Rα
(
µ(T )

)
dλ =

∫
[ a , b ]

Rα (v) dλ = v .

This means that, for any µ1 , µ2 ∈ cabv(K
n
, v) , H(µ1) − H(µ2) ∈ cabv(K

n
, 0) , so we can use for

H(µ1) − H(µ2) the modified Monge - Kantorovich norm.

b) The condition ‖v‖ 6 a ensures that Ba(K
n
, v) 6= ∅. Let t ∈ T and let δt be

the Dirac measure concentrated in t . We have : δt v ∈ cabv(K
n
, v) and ‖ δt v ‖ = ‖ v ‖ 6 a . Hence

δt v ∈ Ba(K
n
, v). �

Theorem 3.10. (Fractal vector measure for any arbitrary Banach space)



Let X a Banach space and consider
(
cabv(X) , ‖ ‖

)
. We suppose :∫

[ a , b ]

‖Rα‖0 dλ < 1.

Let µ
0 ∈ cabv(X) and

P : cabv(X) −→ cabv(X) , P (µ) = H(µ) + µ
0
.

Then there exists an unique measure µ* ∈ cabv(X) such that P (µ*) = µ* .

Proof. For any µ1 , µ2 ∈ cabv(X) , by using Theorem 3.3, we have:

‖P (µ1) − P (µ2) ‖ = ‖H(µ1) − H(µ2) ‖ 6 ‖H ‖0 ‖µ1 − µ2 ‖

6
( ∫

[ a , b ]

‖Rα‖0 dλ
)
‖µ1 − µ2 ‖.

So P is a contraction on the Banach space
(
cabv(X) , ‖ ‖

)
. Using the contraction principle, there

exists a unique measure µ* ∈ cabv(X) such that P (µ∗) = µ∗. �
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[3] I. Chiţescu, R. Miculescu, L. Niţă, L. Ioana, Monge-Kantorovich norms on spaces of vector measures ,

accepted for publication in Results in Mathematics.
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