A NEW CLASS OF ISODUAL CYCLIC CODES OF RATE 1/2 OVER \mathbb{F}_p

CHERIF MIHOUBI, PATRICK SOLÉ

ABSTRACT. A new class of isodual cyclic codes of parameters $[n, k]_p$, is found for n singly even, not a multiple of p.

Mathematics Subject Classification (2010): 94B15, 94B05, 94B60, 12E20. Keywords: cyclic codes, generator polynomial, isodual codes.

Article history: Received 28 February 2016 Received in revised form 14 April 2016 Accepted 16 April 2016

1. Introduction

In the present work, we consider cyclic codes over \mathbb{F}_p of rate 1/2, where p is a prime number. An important subclass of these is that of isodual codes, i.e. codes equivalent to their duals. We propose, in the cases: n = 2m, with m odd, a construction of isodual cyclic codes.

Recently a new results on the optimization of the minimum distance of cyclic codes of rate 1/2 over \mathbb{F}_3 and the characterization of generating polynomial of an isodual cyclic code over \mathbb{F}_3 and \mathbb{F}_5 are presented in [6] and [7]. Generally the characterization of the generating polynomial of an isodual cyclic code is left as a challenging open problem.

2. ISODUAL CYCLIC CODES OF RATE 1/2 OVER \mathbb{F}_p

Some familiarity with coding theory is in [5], [8]. Let \mathbb{F}_p denote the Galois field of p elements. Recall that the rate of a linear code of length n and dimension k is k/n. Two linear codes are said to be equivalent if one can be obtained from the other by permutation of coordinates. A linear code is said to be isodual if and only if it is equivalent to its dual. Recall that a cyclic code of length n over \mathbb{F}_p can be regarded as an ideal in the principal ideal ring $F_p[X]/(X^n-1)$. If g(X) denote the generator polynomial of a cyclic code C, then the generator of the dual code, denoted by h(X) is, up to sign, the reciprocal of its complement

$$h(X) = \frac{X^n - 1}{g(X)},$$

where the reciprocal polynomial $f^*(X)$ of a polynomial f(X), of degree n over F_p , is defined by

 $f^*(X) = X^n f(\frac{1}{X}).$

The parameters of a p-ary code are denoted by $[n, k]_p$ and are length and dimension. The algorithm to compute the minimum distance of a cyclic codes is in [9] and some optimal linear codes of rate 1/2 over \mathbb{F}_5 and \mathbb{F}_7 are described in [3]. In [2] the online table of self-dual codes over \mathbb{F}_7 is maintained.

3. Special class of isodual cyclic codes of parameters $[n, \frac{n}{2}]_p$

For m a positive integer consider the cyclotomic polynomial

$$\Phi_m(X) := \prod_{\substack{1 \le k \le m \\ (k, m) = 1}} (X - e^{2\pi i k/m}).$$

Thus the first five cyclotomic polynomials are

$$\Phi_1(X) = X - 1, \ \Phi_2(X) = X + 1, \ \Phi_3(X) = X^2 + X + 1, \ \Phi_4(X) = X^2 + 1,$$

$$\Phi_5(X) = X^4 + X^3 + X^2 + X + 1.$$

If p is a prime, then

(3.1)
$$\Phi_p(X) = X^{p-1} + X^{p-2} + \dots + X + 1,$$

and, if m is an odd number, then

$$\Phi_{2m}(X) = \Phi_m(-X).$$

Hence,

(3.3)
$$X^m - 1 = \prod_{d/m} \Phi_d(X).$$

Since $\Phi_m(X) \in \mathbb{Z}[X]$ (see, for example, N. Jacobson [4] or K. Conrad [1]), for a fixed prime p, they can reduce them modulo p. It is known the following result:

Theorem 3.1. ([1], [4]) Let p be a fixed prime. Then $\Phi_m(X)$ is irreducible in $\mathbb{F}_p[X]$ if and only if m is not a multiple of p, and $p \pmod{m}$ is a generator of the multiplicative group of \mathbb{Z}_m .

If p is a fixed prime we begin our study of cyclic codes of parameters $[n, \frac{n}{2}]$, n singly even, and not a multiple of p. the following theorem is the main result of the paper.

Theorem 3.2. If p, m be two distinct odd primes such that $p \pmod{m}$ is a generator of the multiplicative group of \mathbb{Z}_m and n = 2m, then a cyclic code of parameters $[n, \frac{n}{2}]$ is isodual

Proof. Let C be a cyclic code of parameters $[n, \frac{n}{2}]$ having the generator polynomial denoted by g(X). Since by (3.1)-(3.3),

$$X^{n} - 1 = \Phi_{1}(X)\Phi_{2}(X)\Phi_{m}(X)\Phi_{2m}(X)$$

$$= (X-1)(X+1)(X^{m-1} + X^{m-2} + \dots + X+1)(X^{m-1} - X^{m-2} + \dots - X+1),$$

and, by Theorem 3.1, $\Phi_m(X)$ and $\Phi_m(-X)$ are irreducible in $\mathbb{F}_p[X]$, it follows that there are only 4 choice for g(X) of degree $\frac{n}{2}$:

$$g(X) = (X - 1)\Phi_m(X),$$

 $g(X) = (X - 1)\Phi_{2m}(X),$
 $g(X) = (X + 1)\Phi_m(X),$
 $g(X) = (X + 1)\Phi_{2m}(X),$

where

$$\Phi_m(X) = X^{m-1} + X^{m-2} + \dots + X + 1,$$

and we have always

$$\Phi_m^*(X) = \Phi_m(X).$$

We compute the generator of the dual code. First we have respectively

$$(X^n - 1)/g(X) = (X + 1)\Phi_{2m}(X),$$

 $(X^n - 1)/g(X) = (X + 1)\Phi_m(X),$
 $(X^n - 1)/g(X) = (X - 1)\Phi_{2m}(X),$
 $(X^n - 1)/g(X) = (X - 1)\Phi_m(X).$

Taking reciprocal of both sides, we obtain

$$\left(\frac{X^n - 1}{g(X)}\right)^* = \pm g(-X).$$

Since the map $g(X) \mapsto \pm g(-X)$ is an isometry, we see that the cyclic code of generator g(X) and its dual are equivalent codes.

Example 3.3. If p = 3, for n = 34, 38, 58, 62, the cyclic codes of parameters $[n, \frac{n}{2}]$ are isodual (see [7], Proposition 3).

Example 3.4. If p = 5, for n = 22, 38, the cyclic codes of rate $\frac{1}{2}$ are isodual (see [6], Proposition 2.1 and 2.3)

Example 3.5. If p = 7, then the following table gives several examples of isodual cyclic codes.

m	$p \pmod{m}$	order of $p \pmod{m}$	n	type of code
11	7	10	22	isodual
13	7	12	26	isodual
17	7	16	34	isodual
19	7	18	38	isodual
23	7	22	46	isodual
29	7	28	58	isodual
31	7	30	62	isodual
37	7	36	74	isodual
41	7	40	82	isodual
43	7	42	86	isodual

Remark 3.6. Using the algorithm in [9], it can be shown that the largest minimum distance of the all codes of parameters $[n, \frac{n}{2}]_7$ is equal to 4.

4. Conclusion

In this work, following the lead of [6] and [7] we have studied isodual cyclic codes over the field \mathbb{F}_p and have provided a simple construction valid for all lengths n of the form twice an odd number m. The value of the minimum distance of these codes has been determined for such n not a multiple of p. It is possible that other constructions or other lengths yield larger minimum distances.

Acknowledgement. The authors would like to thank the referee for his suggestions which improve the original manuscript.

References

- [1] K. Conrad, Cyclotomic extension, http://www.math.uconn.edu/kconrad/math5211s13/handouts/cyclotomic.pdf.
- [2] P. Gaborit, Table of Self-Dual Codes over GF(7), [tables; online], http://www.unilim. fr/pages_perso/philippe.gaborit/SD/GF7.htm.
- [3] T. A. Gulliver, P. R. J. Ostergard and N. Senkevitch, Optimal linear rate 1/2 codes over \mathbb{F}_5 and \mathbb{F}_7 , Discrete Math. **265** (2003), 59-70.
- [4] N. Jacobson, Lectures in abstract algebra, vol. III, D. Van Nostrand Company, Inc. Princeton, 1964.
- [5] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
- [6] C. Mihoubi, Isodual Cyclic Codes of rate $\frac{1}{2}$ over GF(5), Int. J. Open Problems Comp. Math 4 (2011), 33-39.
- [7] C. Mihoubi and P. Solé, Optimal and Isodual Ternary Cyclic Codes of rate $\frac{1}{2}$, Bull. Math. Sci., 2 (2012), 343-357.
- [8] E. M. Rains and N. J. A. Sloane, Self-dual codes, Handbook of Coding Theory, in V. S. Pless and W. C. Huffman (eds), Elsevier, Amsterdam, 1998.
- [9] J. F. Voloch, Computing the minimal distance of cyclic codes, Comp. and Appl. Math., 24 (2005), 393-398.

Département de Mathématiques, Université Med Boudiaf de M'sila, Bp 581 Hodna M'sila 28000, Algérie

 $E\text{-}mail\ address{:}\ \mathtt{cherif.mihoubi@yahoo.fr}$

TÉLÉCOM PARISTECH, DÉPT COMELEC, 46 RUE BARRAULT 75013 PARIS, FRANCE

 $E ext{-}mail\ address: } {\tt sole@telecom-paristech.fr}$