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Abstract

Numerous results on self-reciprocal polynomials over finite fields
have been studied. In this paper we generalize some of these to a-self
reciprocal polynomials defined in [4]. We consider some properties of
the divisibility of a-reciprocal polynomials and characterize the parity
of the number of irreducible factors for a-self reciprocal polynomials
over finite fields of odd characteristic.
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1 Introduction

Self-reciprocal polynomials over finite fields are of interest both from a theoretical
and a practical viewpoint, so they are widely studied by many authors (see, for
example, [2, 3, 5]). Carlitz [3] proposed a formula on the number of self-reciprocal
irreducible monic (srim) polynomials over finite fields and Meyn [7] gave a simpler
proof of it. Recently Carlitz’s result was generalized by Ahmadi [1] and similar
explicit results have been obtained in [6, 8]. Using the Stickelberger-Swan theo-
rem, Ahmadi and Vega [2] characterized the parity of the number of irreducible
factors of a self-reciprocal polynomials over finite fields. In [10], Yucas and Mullen
classified srim polynomials based on their orders and considered the weight of srim
polynomials. The problem concerning to the existence of srim polynomials with
prescribed coefficients has also been considered, see [5].

On the other hand, Fitzgerald and Yucas [4] introduced a new notion of general-
ized reciprocal polynomial over finite fields to give new descriptions of the factors of
Dickson polynomials over finite fields. They characterized the generalized recipro-
cal polynomials by their roots and orders so that the results of [10] were generalized.
The generalization of reciprocal polynomials gives a possibility to find new special
types of irreducible polynomials over finite fields. This motivated us to consider
the generalized reciprocal polynomials over finite fields. Consideration of the divis-
ibility and the number of irreducible factors of a given polynomial is the first step
to test its irreducibility.

In this work we find some properties for the divisibility of generalized recip-
rocal and generalized self-reciprocal polynomials for the purpose of characterizing
a class of the generalized srim polynomials. First we characterize the generalized
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reciprocal of the product of given polynomials, extend the notion of generalized self-
reciprocal polynomial defined only for even degree in [4] to odd degree and obtain
some new results on the divisibility of trivial or nontrivial generalized self-reciprocal
polynomials. Next we determine the parity of the number of irreducible factors of
generalized self-reciprocal polynomials which is a generalization of the results in [2].
In fact, we also have obtained an explicit formula on the number generalized srim
polynomials but when we prepare for submission, a more generalized result in [1]
came to our view, so the formula was omitted from this paper.

Throughout the paper, let q = pe be an odd prime power, Fq be a finite field
containing q elements and 0 6= a ∈ Fq. For f(x) ∈ Fq[x], a monic polynomial of

degree n with f(0) 6= 0, f̂a(x) := xn

f(0)f
(
a
x

)
is called a-reciprocal of f(x) [4]. That

is, if f(x) =
∑n
i=0

bix
i then f̂a(x) = (1/b0)

∑n
i=0

bia
ixn−i. f̂a(x) is also monic and

if α is a root of f(x) then a/α is a root of f̂a(x). The case a = 1 is the usual
reciprocal in [2, 7, 10].

2 Divisibility of generalized reciprocal polynomi-
als

In this section we summarize some properties for the divisibility of generalized
reciprocal and generalized self-reciprocal polynomials over Fq.

Theorem 1. a-reciprocal of a product of two polynomials is the product of a-
reciprocals of given polynomials.

Proof. Let f(x) =
∑n
i=0

bix
i, g(x) =

∑m
j=0 cjx

j , (b0 6= 0, c0 6= 0). From the
definition,

f̂a(x) =
1

b0

n∑
i=0

bia
ixn−i =

1

b0

n∑
i=0

bn−ia
n−ixi,

ĝa(x) =
1

c0

m∑
j=0

cja
jxm−j =

1

c0

m∑
j=0

cm−ja
m−jxj ,

f̂a(x) · ĝa(x) =
1

b0c0

n+m∑
k=0

 ∑
i+j=k

(
bn−ia

n−i) (cm−jam−j)
xk

=
1

b0c0

n+m∑
k=0

 ∑
i+j=k

bn−i · cm−j · an+m−k
xk

and

f(x) · g(x) =

n+m∑
k=0

 ∑
i+j=k

bicj

xk =

n+m∑
k=0

dkx
k

dk :=
∑
i+j=k

bicj

 .

Therefore

f̂ga(x) =
1

b0c0

n+m∑
k=0

dka
kxn+m−k =

1

b0c0

n+m∑
k=0

dn+m−ka
n+m−kxk
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We set i′ := n− i, j′ := m− j, then

dn+m−k =
∑

i′+j′=k

bn−i′cm−j′

and thus

f̂ga(x) =
1

b0c0

n+m∑
k=0

 ∑
i′+j′=k

bn−i′ · cm−j′ · an+m−k
xk.

It might be f̂a(x) = f̂b(x) for nonzero distinct elements a, b in Fq. For example,

if f(x) = x2 + c ∈ F5[x], c 6= 0, then f̂2(x) = f̂3(x).

A monic polynomial f(x) ∈ Fq[x] is said to be a-self reciprocal when f̂a(x) =
f(x). In [4], the notion of a-self reciprocal polynomial has been defined for only
even degree. Note that f(x) =

∑n
i=0

bix
i is a-self reciprocal if and only if for each

i, bn−ib0 = bia
i. When i = n, we see that b20 = an.

First consider a case when n is odd. If an and thus a is not a square in Fq,
then there is not any a-self reciprocal monic (srm) polynomial of degree n. When
0 6= a ∈ Fq is a square in Fq, if f(x) is a-srm polynomial then either b0 =

√
a
n

or
b0 = −

√
a
n
.

Theorem 2. Let n be an odd, 0 6= a ∈ Fq be a square in Fq and f(x) ∈ Fq[x] be
a-srm polynomial of degree n.

(1) If b0 =
√
a
n

then f(x) is divided by x+
√
a.

(2) If b0 = −
√
a
n

then f(x) is divided by x−
√
a.

Proof. Suppose b0 =
√
a
n
. Then we have

f
(
−
√
a
)

=
(
−
√
a
)n

+ bn−1
(
−
√
a
)n−1

+ · · ·+ b1
(
−
√
a
)

+
(√
a
)n

= bn−1
(
−
√
a
)n−1

+ · · ·+ b1
(
−
√
a
)
,

f̂a
(
−
√
a
)

= − 1

(−
√
a)
n

[√
a
n (−√a)n + · · ·+ bn−1a

n−1 (−√a)+ an
]

= −
[√

a
n

+ b1
(
−
√
a
)

+ · · ·+ bn−1
(
−
√
a
)n−1

+
(
−
√
a
)n]

= −
[
b1
(
−
√
a
)

+ · · ·+ bn−1
(
−
√
a
)n−1]

= −f
(
−
√
a
)

and from f = f̂a, f (−
√
a) = −f (−

√
a) which implies that f (−

√
a) = 0. The

second case follows similarly.

Corollary 1. If 0 6= a ∈ Fq is a square in Fq, then x +
√
a and x −

√
a are the

only a-srim polynomials of odd degree over Fq.

Next let n be an even, that is, n = 2m. f(x) =
∑2m
i=0

bix
i is said to be trivial

or nontrivial respectively, according to b0 = −am or b0 = am[4]. If f(x) is a
trivial a-srm polynomial, then f (

√
a) = f (−

√
a) = 0, hence f(x) is a multiple of

x2− a. Therefore x2− a is the only trivial a-srim polynomial. From the definition,
bmb0 = bma

m and b0 = −am, so that bm = 0, hence trivial a-srm polynomials have
always even terms.
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Lemma 1. x2 − a is a trivial a-srm polynomial and
(
x2 − a

)2
is a nontrivial one.

Lemma 2. The product of two a-srm polynomials satisfies the following multipli-
cation table.

· trivial nontrivial
trivial nontrivial trivial

nontrivial trivial nontrivial

The proof of the above lemmas are very simple so we omit.

Theorem 3. If f(x) ∈ Fq[x] is a-srm polynomial of even degree, then it can be

written as f(x) =
(
x2 − a

)k · g(x), where g(x) is a nontrivial a-srm polynomial not
divided by x2 − a and

k =

{
odd, f(x) is trivial,
even, f(x) is nontrivial

.

Proof. Suppose that x2 − a divides f(x). Then f(x) =
(
x2 − a

)
· f1(x) for some

f1(x) ∈ Fq[x]. If f(x) is trivial, then f1(x) is nontrivial by Theorem 1 and the
above lemmas. And if f(x) is nontrivial, then f1(x) is trivial, so it is divided by

x2 − a and it can be written as f(x) =
(
x2 − a

)2 · f2(x). Again from the above
lemmas f2(x) is nontrivial. Continuing this procedure implies the claim.

If f(x) ∈ Fq[x] is divided by x2 − a, then
√
a and −

√
a are roots of f(x).

If a is a square in Fq[x], then there might be an a-srm polynomial which is not
divided by x2 − a but has a root

√
a or −

√
a. For example, if q = 5, a = 4, then√

a = 2,−
√
a = 3,

f(x) = x6 + x5 + 3x4 + 4x3 + 2x2 + x+ 4 ∈ F5[x]

is a nontrivial 4-srm polynomial which is not divided by x2 − 4 but f(2) = 0 and

g(x) = x6 + 3x4 + 3x3 + 2x2 + 4 ∈ F5[x]

is a nontrivial 4-srm polynomial which is not divided by x2 − 4 but g(3) = 0.

Theorem 4. Let f(x) ∈ Fq[x] be a nontrivial a-srm polynomial of degree n = 2m
and a be a square in Fq. If f(x) is not divided by x2 − a and f (

√
a) = 0, then it

can be written as f(x) = (x−
√
a)
k · g(x), where k is even and g(x) is a nontrivial

a-srm polynomial with g (
√
a) 6= 0.

Proof. Let f(x) =
∑n
i=0

bix
i then by assumption b0 = f(0) = am =

√
a
n
. Set

f1(x) :=
f(x)

x−
√
a

= xn−1 + cn−2x
n−2 + · · ·+ c1x+ c0 ∈ Fq[x].

Clearly (−
√
a) · c0 = b0 =

√
a
n

which implies that c0 = −
√
a
n−1

. Then f1(x)
is a-srm polynomial since x −

√
a is a-srm polynomial. By Theorem 2, f1(x) is

divided by x −
√
a and thus we can write as f(x) = (x−

√
a)

2 · f2(x). It is clear

that (x−
√
a)

2
is a nontrivial a-srm polynomial, hence f2(x) is a nontrivial a-srm

polynomial of degree n − 2. Continuing this procedure for f2(x) completes the
proof.

Galaxy
Text Box
134



When a is a square in Fq, from this theorem the consideration of nontrivial
a-srm polynomials not divided by x2 − a is reduced to the case of ones without
roots

√
a and −

√
a.

3 The parity of the number of irreducible factors
of generalized self-reciprocal polynomials

In this section we characterize the parity of the number of irreducible factors of the
nontrivial a-srm polynomials over Fq.

Theorem 5. Let f(x) ∈ Fq[x] be a nontrivial a-srm polynomial of degree 2n with
r pairwise distinct irreducible factors over Fq. Then r ≡ 0 (mod 2) if and only if
(−1)nan(n−2)f (

√
a) f (−

√
a) is a square in Fq, where

√
a is a square root of a in

an extension of Fq.

Proof. Let f(x) =
∑2n
i=0

bix
i, then f(x) = xng

(
x+ a

x

)
, where g(x) = bn +

∑n−1
i=0

b2n−iDn−i,a(x) and Dn−i,a(x) is the Dickson polynomial [4]. Clearly f(0) = an 6= 0
and by properties of the resultant, R(f, f ′) = R(f, nf − xf ′). Since

f ′(x) = nxn−1g(x+ a/x) + xng′
(
x+

a

x

)(
1− a

x2

)
= nxn−1g

(
x+

a

x

)
+ xn−2g′

(
x+

a

x

)
(x2 − a)

and
nf(x)− xf ′(x) = −xn−1g′

(
x+

a

x

)
(x2 − a),

we have

D(f) = (−1)n(2n−1)R(f, f ′) = (−1)n · f(0)−1 ·R(f, nf − xf ′)

= (−1)n · a−n ·R(f, x2 − a) ·R
(
f,−xn−1g′

(
x+

a

x

))
= (−1)n · a−n · f

(√
a
)
f
(
−
√
a
)
·R
(
f,−xn−1g′

(
x+

a

x

))
Let x0, · · · , xn−1, ax0

, · · · , a
xn−1

be the roots of f(x) in some extension of Fq. Then

R
(
f,−xn−1g′

(
x+

a

x

))
=

n−1∏
i=0

xn−1i g′
(
xi +

a

xi

) n−1∏
i=0

(
a

xi

)n−1
g′
(
a

xi
+ xi

)

=

n−1∏
i=0

xn−1i g′
(
xi +

a

xi

) n−1∏
i=0

an−1x1−ni g′
(
xi +

a

xi

)

= an(n−1)

[
n−1∏
i=0

g′
(
xi +

a

xi

)]2
.

On the other hand, since xi is a root of f(x) if and only if xi + a
xi

is a root of g(x)
and

D(g) = (−1)n(n−1)/2R(g, g′) = (−1)n(n−1)/2
n−1∏
i=0

g′
(
xi +

a

xi

)
,
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we have
D(f) = (−1)nan(n−2)f

(√
a
)
f
(
−
√
a
)
·D(g)2.

Required result follows from Stickelberger theorem [9] (see also [2, Theorem 4]).

Let f(x) =
∑2n
i=0

bix
i be as in Theorem 5, then

f(x) =

n∑
i=0

b2ix
2i +

n−1∑
i=0

b2i+1x
2i+1

and

f
(√
a
)

=

n∑
i=0

b2ia
i +
√
a

n−1∑
i=0

b2i+1a
i,

f
(
−
√
a
)

=

n∑
i=0

b2ia
i −
√
a

n−1∑
i=0

b2i+1a
i.

Denote

A :=

n∑
i=0

b2ia
i, B :=

n−1∑
i=0

b2i+1a
i

then f (
√
a) f (−

√
a) = A2 − aB2, which means f (

√
a) f (−

√
a) ∈ Fq. Since f(x)

is nontrivial, bi = b2n−ia
n−i. Therefore if n is odd, then

A = 2

(n−1)/2∑
i=0

b2n−2ia
n−i, B = 2

(n−3)/2∑
i=0

b2n−2i−1a
n−i−1 + bna

(n−1)/2,

and if n is even then

A = 2

n/2−1∑
i=0

b2n−2ia
n−i + bna

n/2, B = 2

n/2−1∑
i=0

b2n−2i−1a
n−i−1.

For any monic polynomial f(x) ∈ Fq[x] of degree n, denote fQa (x) := xnf
(
x+ a

x

)
.

Then fQa (x) is a nontrivial a-srm polynomial of degree 2n. This is a natural gener-
alization of fQ(x) in [7] and it has been mentioned in [4], too.

Theorem 6. Suppose that f(x) ∈ Fq[x] is a monic irreducible polynomial of degree
n(≥ 1) and f (

√
a) f (−

√
a) 6= 0. Then fQa (x) is either a-srim polynomial or a

product of a-reciprocal pair of irreducible polynomials of degree n which are not
a-self reciprocal.

Proof. Let α be any root of fQa (x). Then β = α+ a
α is a root of f(x), so βq

n

= β.

Here n is the smallest positive integer k with βq
k

= β. Multiply αq
n

to both sides
of the identity

αq
n

+
a

αqn
= βq

n

= β = α+
a

α
,

then
α2qn + a = αq

n+1 + aαq
n−1
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and so (
αq

n+1 − a
)(

αq
n−1 − 1

)
= 0.

Hence αq
n+1 = a or αq

n−1 = 1. When αq
n+1 = a, the irreducible factor g(x) of

fQa (x) with a root α has degree ≥ 2 because if g(x) has degree 1, then a is a square
in Fq and g(x) = x ±

√
a which contradicts to f (

√
a) f (−

√
a) 6= 0. Therefore

g(x) is a nontrivial a-srm polynomial of degree 2d for a positive divisor of n. If

we assume d < n then αq
d+1 = a, so βq

d

= β, a contradiction. Hence d = n and
fQa (x) is irreducible over Fq. When αq

n−1 = 1, the irreducible factor g(x) of fQa (x)
with a root α divides xq

n − x and the degree of g(x) is n. Therefore fQa (x) is a

product of two n-degree irreducible polynomials g(x) and h(x) =
fQ
a (x)
g(x) . Suppose

g(x) is a nontrivial a-srim polynomial, then αq
n/2+1 − a = 0 which contradicts to

the minimality of n. So g(x) and h(x) are not a-self reciprocal. And if fQa (x) has
a root α then it also has a root a

α , which implies easily that h(x) is a-reciprocal of
g(x).

Finally we prove that Theorem 5 is still valid when f(x) has repeated irreducible
factors.

Theorem 7. Let f(x) ∈ Fq[x] be a nontrivial a-srm polynomial of degree 2n with
f (
√
a) f (−

√
a) 6= 0, and let r be the number of irreducible factors counted with

multiplicity of f(x). Then r is even if and only if (−1)nan(n−2)f (
√
a) f (−

√
a) is

a square in Fq.

Proof. As in the proof of Theorem 5, there exists g(x) ∈ Fq[x] such that f(x) =
xng

(
x+ a

x

)
. Suppose that g(x) = g1(x) · · · gk(x) where gi(x) ∈ Fq[x] is monic

irreducible polynomial of degree ni and n1 + · · · + nk = n. Denote fi(x) :=
xnigi

(
x+ a

x

)
, then f(x) = f1(x) · · · fk(x) where every fi(x) is a nontrivial a-

srm polynomial of degree 2ni over Fq. By Theorem 6, every fi(x) is either ir-
reducible or a product of two distinct monic irreducible polynomials of degree ni.
Now suppose that the claim holds for two nontrivial a-srm polynomials g(x), h(x)
of degree 2s, 2t with rs, rh irreducible factors counted with multiplicity respec-
tively over Fq. If both rs and rh are odd, then neither (−1)sas(s−2)g(

√
a)g(−

√
a)

nor (−1)tat(t−2)h(
√
a)h(−

√
a) is a square in Fq, hence (−1)s+ta(s+t)(s+t−2)g(

√
a)

g(−
√
a)h(
√
a)h(−

√
a) is a square in Fq. Similar observation about other cases

for rs and rh tells us the claim is still valid for g(x)h(x). It is sufficient to apply
Theorem 5 to complete the proof.
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