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Abstract. In this paper, we try to study a special class of frame wavelets in Banach
spaces whose Fourier transforms are supported by frame wavelet sets. Our results
generalize the various results of [2] to Banach spaces other than Hilbert spaces using
the Feichtinger and Gröchenig theory.
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1 Introduction

Frame provide stable expansions in Hilbert spaces, but they may be over complete
and the coefficients in the frame expansion need not be unique unlike in orthogonal
expansions. This redundancy is useful for the application point of view that is to noise
reduction or for the reconstruction from lossy data [3,5,12]. The construction of stable
orthonormal basis are often difficult in a numerical efficient way than the construction
of frames which are more flexible. Sometimes it is reasonable to use the frames to
analyze additional properties of functions beyond the Hilbert space. This led to the
characterization of an associated family of Banach spaces of functions by the values
of the frame coefficients which play an important role in non-linear approximation
and in compression algorithms [4]. However, in [6] Gröchenig showed that certain
frames for Hilbert spaces extend automatically to Banach frames. Using this theory
he derived some results on the construction of non-uniform Gabor frames and solved
a problem about non-uniform sampling in shift-invariant spaces. Recently, Kumar [9]
studied the convergence of wavelet expansions associated with dilation matrix in the
variable Lp spaces using the approximate identity. In an another paper Kumar [10]
studied the convergence of non-orthogonal wavelet expansions in Lp(R), 1 < p <∞.

Let H be a Hilbert space. A collection of elements {xi} is called a frame of H if
there exist two positive constants 0 < A ≤ B such that
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A ‖ f ‖2≤
∑
i

| 〈f, xi〉 |2≤ B ‖ f ‖2

for f ∈ H. The supremum of all such numbers A and infimum of all such numbers B
are called the frame bounds of the frame and are denoted by A0 and B0 respectively.
A frame {xi} is called a tight frame when A0 = B0, and a normalized tight frame
when A0 = B0 = 1. Frames can be regarded as generalizations of orthogonal bases
of Hilbert spaces. The generalization of frames to Banach spaces other than Hilbert
spaces generated by a single function through dilations and translations are of special
interest due to their close relation to wavelets and will be our focus in this paper.

Let D and T be the standard dilation and translation operators, respectively, on
L2(R), defined by (Df)(x) =

√
2f(2x) and (Tf)(x) = f(x − 1) for any f ∈ L2(R).

A function ϕ ∈ L2(R) is called a frame wavelet for L2(R) if

{ϕn,`(x)} = {2n/2ϕ(2nx− `) : n, ` ∈ Z} = {DnT `ϕ : n, ` ∈ Z} (1.1)

is a frame of L2(R), i.e., if there exist two positive constants 0 < A ≤ B such that

A ‖ f ‖2≤
∑
n,`∈Z

| 〈f,DnT `ϕ〉 |2≤ B ‖ f ‖2 (1.2)

for all f ∈ L2(R). ϕ is called a tight frame wavelet if this frame is tight. Similarly, ϕ
is called a normalized tight frame wavelet if this frame is a normalized tight frame.

Let ϕ̂ = 1√
2π
χE, where E is a Lebesgue measurable set with finite measure and ϕ̂

denote the Fourier transform of ϕ. We call E a frame wavelet set or just a frame set
if the function ϕ is a frame wavelet for L2(R). Similarly, E is called a (normalized)
tight frame wavelet set if ϕ is a (normalized) tight frame wavelet. The study of frame
sets appears to play a very important role here since for any given positive numbers
α,there exist frame sets of measure α. This enables us to construct various frequency
domain frame wavelets with support of measure α.

In [1], a complete characterization of tight frame wavelet sets t-sets was obtained,
together with some necessary or sufficient conditions for a set E to be an frame
wavelet set. Let ϕ ∈ L2(R) and let Eϕ̂ = supp(ϕ̂). It turns out that if Eϕ̂ is a t-sets
then its Lebesgue measure is at most 2π. Furthermore, the result in [7], regarding
frame wavelets can be readily applied to determine whether ϕ is a frame wavelet.
This implies that we are unlikely to obtain new results if we only concentrate on
frame wavelets in Banach spaces whose Fourier transforms are supported by f -sets.
Our results generalize the various results contained in [2]. Although, V.V.Kisil [8]
described a construction of wavelets in Banach spaces generated by admissible group
representations. He considered operator-valued Segal-Bargmann-type spaces and the
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Weyl functional calculus. But our approach and results are different from those of
V.V.Kisil [8].

Now we discuss the theory of Feichtinger and Gröchenig, which produces coherent
state decompositions of a large class of Banach spaces in a way that generalizes the
notion of a frame in a Hilbert space. Let H be a Hilbert space, G a topological group
with left Haar measure µ and π a representation of G on H. Let L2(G) denote the
Hilbert space of µ-square integrable functions on G, i.e.,

L2(G) = {F : G→ C :‖ F ‖L2(G)= (
∫
G
| F (x) |2 dµ(x))1/2 <∞}

with inner product 〈F1, F2〉 =
∫
G F1(x)F2(x)dµ(x)

Definition 1.1. [13]. A measure µ on a group G is said to be left-invariant pro-
vided that for every integrable function f onG and every y ∈ G we have

∫
G f(y, x)dµ(x) =∫

G f(x)dµ(x).

A left measure on G, is known as left Haar measure, exists and is unique up to a
constant multiple.

Definition 1.2. Let H be a Hilbert space

1. A representation π ofG onH is a mapping π : G→ L(H) such that π(x.y)=π(x)π(y)
for every x, y ∈G

2. A vector g ∈ H is admissible if
∫
G | 〈g, π(x)g〉 |2 dµ(x) <∞, where µ is the left

Haar measure on G.

3. A vector g ∈ H is cyclic if span {π(x)g}x∈G is dense in H, or equivalently, if
the only f ∈ H such that 〈f, π(x)g〉 = 0 for all x ∈ G is f = 0.

4. π is unitary if the map π(x) : H → H is unitary for each x ∈ G.

5. π is irreducible if every g ∈ H\{0} is cyclic.

6. π is square integrable if π is irreducible and there exists an admissible g ∈
H\{0}.

The Fourier transform is normalized so that it is unitary operator which implies that
(1.2) is equivalent to

A ‖ f ‖2≤
∑
n,`∈Z

| 〈f, D̂nT̂ `ϕ̂〉 |2≤ B ‖ f ‖2,∀f ∈ L2(R). (1.3)

Definition 1.3. Let ϕ̂ ∈ H\{0} be admissible. For f ∈ H we let Vϕ̂f be the

complex-valued function on G given by Vϕ̂f(x) = 〈f, π(x)ϕ̂〉, where π(x)ϕ̂ = D̂nT̂ `ϕ̂.
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In view of [7], we call Vϕ̂f the voice transform of f with respect to ϕ̂.

Suppose that π is an irreducible, unitary representation of G on H which is inte-
grable, i.e. these is a ϕ̂ ∈ H\{0} such that∫

G
| Vϕ̂ϕ̂(x) | dµ(x) =

∫
G
| 〈ϕ̂, π(x)ϕ̂〉 | dµ(x) <∞,

and which is continuous, i.e., π(x)ϕ̂ is a continuous map of G into Ho for all x ∈ G
since dilation and translations are continuous.

Let Ho = {ϕ̂ ∈ H : Vϕ̂ϕ̂ ∈ L1(G)} and H
′
o ⊃ H be the dual of Ho. We

define the coorbit space Co(L
p(G)) = {f ∈ H

′
o : Vϕ̂f ∈ Lp(G)} and the norm

‖ f ‖Co(Lp(G))=‖ Vϕ̂f ‖Lp(G). Also, we define an appropriate sequence space `p(Z)
corresponding to Lp(G).

We see that the following integral operator is a convolution operator on G by

∫
G
Vϕ̂f(x)Vϕ̂ϕ̂(x−1y)dµ(x) =

∫
G
〈f, π(x)ϕ̂〉〈ϕ̂, π(x−1y)ϕ̂〉dµ(x)

=
∫
G
〈f, π(x)ϕ̂〉〈π(x)ϕ̂, π(y)ϕ̂〉dµ(x)

= 〈f, π(y)ϕ̂〉
= Vϕ̂f(y).

Here Vϕ̂ϕ̂(x−1y) is an approximate identity. This operator can be approximate by
a discrete operator. For this, let ψ = {ψi} be a collocation of functions on G that
satisfy:

1. supi ‖ ψi ‖∞<∞,

2. there is an open set O ⊂ G with compact closure and points xi ∈ G such that
supp{ψi} ⊂ xiO for each i,

3.
∑
i ψi(x) ≡ 2π,

4. supx∈G ]{i ∈ I : z ∈ xiQ} <∞ for each compact set Q ⊂ G.

We say such a ψ bounded uniform partition of 2π. Define the operator Tψ on Lp(G)
associated to a particular bounded uniform partition of ψ, by

Tψf(y) =
∑
i〈F, ψi〉Vϕ̂ϕ̂(x−1

i y) , F (y) = Vϕf(y) ∈ Lp(G) for some f ∈ Co(Lp(G)).

Consider any collection of points {xi} ⊂ G such that ∪xiU = G and xiV ∩xjV = φ
if i 6= j where U and V are compact neighborhoods of the identity in G. It can be
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shown that for any bounded uniform partition of ψ associated to {xi}, there are
constants A,B > 0 such that

A ‖ Vϕ̂f ‖Lp(G)≤‖ 〈Vϕ̂f, ψi〉 ‖`p(Z)≤ B ‖ Vϕ̂f ‖Lp(G) . (1.4)

The operator Tψ is continuous and continuously invertible on S = {Vϕ̂f ∈ Lp(G) for
some f ∈ Co(Lp(G))}. Thus for each f ∈ Co(Lp(G)) we define

(HEf)(ξ) =
∑
n,`∈z

〈f, π(x)ϕ̂〉π(ξ)ϕ̂,

where ϕ̂ = 1√
2π
χE, E be a Lebesgue measurable set with finite measure.

We observe that if HEf converges to a function in Co(L
p(G)) under the norm

‖‖Co(Lp(G)), then the generalization of (1.3) to Banach spaces other than Hilbert spaces
is

A ‖ f ‖Co(Lp(G))≤‖ 〈HEf, f〉 ‖`p(z)≤ B ‖ f ‖Co(Lp(G)) (1.5)

for all f ∈ Co(Lp(G)) . Now for each f ∈ Co(Lp(G)) we can write

〈HEf, f〉 = Tψ(T−1
ψ )〈HEf, f〉

=
∑
i

〈T−1
ψ 〈HEf, f〉, ψi〉Vϕ̂ϕ̂(x−1

i y)

=
∑
i

〈T−1
ψ 〈

∑
n,`∈Z

〈f, π(x)ϕ̂〉π(y)ϕ̂, f〉, ψi〉〈π(xi)ϕ̂, π(y)ϕ̂〉

=
∑
i

〈T−1
ψ Vϕ̂f〈π(y)ϕ̂, f〉, ψi〉〈π(xi)ϕ̂, π(y)ϕ̂〉

=
∑
i

〈T−1
ψ Vϕ̂fVϕ̂f(xi), ψi〉

=
∑
i

〈T−1
ψ Vϕ̂f〈π(xi)ϕ̂, f〉, ψi〉

= 〈
∑
i

〈T−1
ψ Vϕ̂f, ψi〉π(xi)ϕ̂, f〉

= 〈
∑
i

βi(f)π(xi)ϕ̂, f〉.

It can be seen that HEf =
∑
i βi(f)π(xi)ϕ̂ and for some constants Ao, Bo > 0 we have

Ao ‖ f ‖Co(Lp(G))≤‖ βi(f) ‖`p(Z)≤ Bo ‖ f ‖Co(Lp(G)), (1.6)

using (1.6) we get a generalization of frames to Banach spaces other than Hilbert
spaces i.e.,(1.5).

If the right inequality in (1.6) holds then it can be easily verified that ‖ HEf ‖Co(Lp(G))≤
b ‖ f ‖Co(Lp(G)) for some constant b > 0, HE define a bounded linear operator on
Co(L

p(G)). In this case we say that E is a Bessel set.
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2 Some basic concepts on frame wavelet sets

In this section we shall study the basic concepts and terms concerning frame sets.
For more detailed information about this topic see [1].

Let E be a measurable set. Two elements x, y ∈ E are δ equivalent if x = 2ny
for some integer n. The δ−index of a point x in E is the number of elements in its δ
equivalent class and is denoted by δE(x). Let E(δ, κ) = {x ∈ E : δE(x) = κ}.

Then E is the disjoint union of the sets E(δ, κ). two sets E and F with E = E(δ, 1)
and F = F (δ, 1) are said to be 2-dilation equivalent if every point in E is δ equivalent
to a point in F and vice versa.

Lemma 2.1. If E is a Lebesgue measurable set, then each E(δ, κ) (κ ≥ 1) is also
Lebesgue measurable. Furthermore, each E(δ, κ) is a disjoint union of κ measurable

sets {E(j)(δ, κ), 1 ≤ j ≤ κ}, such that E(j)(δ, κ) δ equivalentE(j
′
)(δ, κ) for any 1 ≤ j,

j
′ ≤ κ.

If ∆(E) = Uκ∈zE
(1)(δ, κ), then every point in it has δ-index one. Furthermore,

we have Uκ∈z2
κE = Uκ∈z2

κ∆(E). A set E is called a 2-dilation generator of R if
E = E(δ, 1) and Uκ∈z2

κE = R. A 2-dilation generator for a subset of R that is
invariant under 2-dilation can be similarly defined.

In the case of translation, we say that x, y ∈ E are 2π-translation equivalent,
denoted by xτy, if x = y + 2nπ for some integer n. The τ−index of a point x in
E is the number of elements in its τ equivalent class and is denoted by τE(x). Let
E(τ, κ) = {x ∈ E : τE(x) = κ}. Than E is the disjoint union of the sets E(τ, κ). De-
fine τ(E) = Un∈z(E ∩ ((2nπ, 2(n+1)π)− 2nπ)). This is a disjoint union if and only if
E = E(τ, 1). Two sets E and F with E = E(τ, 1) and F = F (τ, 1) are said to be 2π-
translation equivalent if every point in E is τ equivalent to a point in F and vice versa.

Lemma 2.2. If E is a Lebesgue measurable set, then each E(τ, κ)(κ ≥ 1) is also
Lebesgue measurable. Furthermore, each E(τ, κ) is a disjoint union of κ−measurable

sets {E(j)(τ, κ)}, 1 ≤ j ≤ κ, such that E(j)(τ, κ) τ equivalent E(j
′
)(τ, κ) for any

1 ≤ j, j
′ ≤ κ.

Remark 2.3. The set E(τ, 1) is uniquely determined by E. Since E(τ, 1) consists
of all points in E that are 2π translation redundancy free and is denoted by Trf (E).

Now we have the following definition

Definition 2.4. A set E is called a basic set if there exists a constant M > 0,
such that µ(E(δ,m)) = 0 and µ(E(τ,m)) = 0 for any m > M.
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The main aim in this section is a generalization of the following theorem [2] to
Banach spaces other than Hilbert spaces.

Theorem 2.5. Let E be a Lebesgue measurable set with finite measure. Then E
is an f-set if E is a basic set and Un∈z2

nτrf (E) = R.

But first we shall prove.

Lemma 2.6. If E is a basic set such that E(δ,m) = E(τ,m) = φ for all m > M ,
where M > 0 is a positive integer, then for any f, g ∈ Co(Lp(G)) we have

‖ 〈HE(f), g〉 ‖`p(Z)≤M5/2 ‖ f ‖Co(Lp(G))‖ g ‖Co(Lp(G)) .

Proof. The proof follows easily by using the right hand inequality in (1.6) and equa-
tion (14) of [1, pp.2051].

Lemma 2.7. Let E be a basic set with property that Uκ∈Z2κτrf (E) = Uκ∈z2
κE =

Ω.Then for any f with support in Ω we have

‖ 〈HE(f), f〉 ‖`p(Z)≥‖ f ‖Co(Lp(G)) .

Proof. We have [1],

m∑
j=1

fκmj.χ2κE(τ,m) =
∑
`∈z
〈f, D̂κτ̂ `

1√
2π
χE(τ,m)〉D̂κτ̂ `

1√
2π
χE(τ,m)

hence

〈
m∑
j=1

fκmj.χ2κE(τ,m), f〉 =
∑
`∈Z

| 〈f, D̂κτ̂ `
1√
2π
χE(τ,m)〉 |2≥ 0.

By Meyer [11]; the equivalent characterization of Lp(R) i.e., if

f ∈ Lp(R) ⇒ [
∑
j,κ

| 〈f, ϕj,κ〉 |2| ϕj,κ |2]1/2 ∈ Lp(R).

Thus

‖ 〈HEf, f〉 ‖`p(Z) = ‖
∑
κ∈Z

M∑
m=1

m∑
j=1

〈fκmjχ2κE(τ,m), f〉 ‖`p(z)

≥ ‖
∑
κ∈Z

〈fχ2κE(τ,m), f〉 ‖`p(Z)

= {
∫
G
[| f |2|

∑
κ∈Z

χ2κE(τ,1) |]2dµ}1/2

≥ ‖ f ‖co(Lp(G)),
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since
∑
κ∈z χ2κ(τ,1) ≥ 1.

Let E be a basic set and let Ω = Uκ∈Z2κE, Set E1 = E ∩ (Uκ∈Z2κTrf (E)), Ē1 =
E\E1, E2 = Ē1 ∩ (Uκ∈z2

κTrf (Ē1)), Ē2 = Ē1\E2, E3 = Ē2 ∩ (Uκ∈z2
κTrf (Ē2)); in gen-

eral set Ēn = Ēn−1\En and define En+1 = Ēn∩(Uκ∈Z2κTrf (Ēn)). Let Ωj = Uκ∈Z2κEj.
By the definition, Ωi = Uκ∈Z2κTrf (Ēi−1) and Ωi ∩ Ωj = φ if i 6= j.

The following theorem is the generalization of Theorem 2.5.

Theorem 2.8. Let E be a basic set such that E(δ,m) = E(τ,m) = φ for m > M ,
and let Ω = U1≤j≤nΩj for some n ≥ 1, Then for any f with support on Ω we have

‖ 〈HEf, f〉 ‖`p(z)≥ an ‖ f ‖Co(Lp(G)),

where an is the n-th term of the sequence of positive numbers defined by aκ = a2
κ−1/(1+

4M5/2)2 and a1 = 1/((1 + 2M5/2)2 + 1), If Ω = R then E is an frame wavelet set.

Proof. The proof of this theorem follows on the lines of Theorem 3.4 of [2] with
Lemma 2.6, 2.7 and [2, Lemma 3.2].

3 Frame wavelets with f-set supported in frequency

domain

Now we will discuss the frame wavelets with f-set support in the frequency domain.
Let ϕ ∈ Co(Lp(G)) and let Eϕ̂ be the support of ϕ̂. We define

Hϕ̂(f) =
∑
n,`∈z

〈f, D̂nτ̂ `ϕ̂〉D̂nτ̂ `ϕ̂

when Hϕ̂(f) defines a bounded linear operator, (1.5) is equivalent to

A0 ‖ f ‖C0(Lp(G))≤‖ 〈Hϕ̂f〉 ‖lp(Z)≤ B0 ‖ f ‖C0(Lp(G)) (3.1)

for all f ∈ C0(L
p(G)). When E is a basic set,we have the following lemma:

Lemma 3.1. If E is a basic set and | ϕ̂ |≤ b for some constant b > 0 on Eϕ̂, then
Hϕ̂ define a bounded linear operator. Furthermore, we have

Hϕ̂(f) =
∑
κ∈z

Hκ
ϕ̂(f)∀f ∈ Co(Lp(G)), (3.2)

where

Hκ
ϕ̂ = ϕ̂(ξ/2κ)

∑
j∈Z

f(ξ + 2κ2πj)¯̂ϕ(ξ/2κ + 2πj)
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and the above sums all converge under the Co(L
p(G)) norm topology.

Proof. The proof follows by simple manipulation in formulas given by [2, Lemma
3.1.].

Let E be an f -set such that E(δ,m) = E(τ,m) = φ form > M , and R = U1≤j≤nΩj

for some n,Ωj = Ωκ∈Z2κτrf (Ēj−1). We define the core of E by

S(E) = U1≤j≤nA(τrf (Ēj−1))

where Ē0 = E1.It is known that S(E) is a 2-dilation generator of R and it is not
unique in general. Now we will prove the following theorem which is the generaliza-
tion of Theorem 4.2 of [2] to Banach spaces other than Hilbert spaces.

Theorem 3.2. Let E be an f-set satisfying the conditions of Theorem 2.8. If the
support of ϕ̂ is contained in E and there exists a constant a > 0 such that | ϕ̂(ξ) |≥ a
a.e. on a core of E, then ϕ is a frame set.

Proof. We can generalize the Lemma 4.5 of [2] to Banach space following the
Lemma 2.7. Now this theorem can be proved by induction similar to the proof of
Theorem 2.8. using [2, Lemma 4.4].

Remark 3.3. Theorem 3.2. cannot be applied to a frame set without a core, the
following theorem ensures that we can still construct frame wavelets with a certain
level of flexibility on an arbitrary frame set with or without a core.

Theorem 3.4. Let E be a frame set. Then ϕ ∈ Co(L
p(G)) is a frame wavelet

if ϕ̂ is bounded, supp(ϕ̂) = E, | ϕ̂ |≥ a > 0 on E for some constant a > 0, and
ϕ̂(s) = ϕ̂(2κs) whenever s and 2κs are both in E for any integer κ.

Proof. Since E is a frame set, there exists a positive constant C > 0 such that

‖ 〈HEf, f〉 ‖`p(Z)≥ C ‖ f ‖Co(Lp(G))

for any f ∈ Co(Lp(G)). Furthermore, by Lemma 3.1, for any f ∈ Co(Lp(G)), we have

Hκ
ϕ̂(f) = ϕ̂(ξ/2κ)

∑
j∈Z

f(ξ + 2κ2πj)¯̂ϕ(ξ/2κ + 2πj)

= ϕ̂(ξ)
∑
j∈Z

f(ξ + 2κ2πj)¯̂ϕ(ξ + 2κ.2πj)

= ϕ̂.Hκ
E(f. ¯̂ϕ),

which implies Hκ
ϕ̂(f) = ϕ̂.Hκ

E(f. ¯̂ϕ) and we get

‖ 〈Hϕ̂f, f〉 ‖`p(Z) = ‖ 〈ϕ̂HE(f. ¯̂ϕ), f〉 ‖`p(Z)
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= ‖ 〈HE(f. ¯̂ϕ), f ¯̂ϕ〉 ‖`p(Z)

≥ C ‖ f ¯̂ϕ ‖Co(Lp(G))

≥ Ca2 ‖ f ‖Co(Lp(G)) .

Thus ϕ̂ is a frequency frame wavelet. Therefore, ϕ is a frame wavelet.
Acknowledgement. The authors are very much thankful to the referee for giving

the fruitful comments to improve the paper.
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