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Abstract. We prove that the edge ideals of line and cyclic graphs and their quotient
rings satisfy the Stanley conjecture. We compute the Stanley depth for the quotient
ring of the edge ideal associated to a cycle graph of length n, given a precise formula
for n ≡ 0, 2 (mod 3) and tight bounds for n ≡ 1 (mod 3). Also, we give bounds for the
Stanley depth of a quotient of two monomial ideals, in combinatorial terms.
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Introduction

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K. Let M be a Zn-graded S-module.
A Stanley decomposition of M is a direct sum D : M =

⊕r
i=1miK[Zi] as a Zn-graded K-vector space,

where mi ∈ M is homogeneous with respect to Zn-grading, Zi ⊂ {x1, . . . , xn} such that miK[Zi] =
{umi : u ∈ K[Zi]} ⊂ M is a free K[Zi]-submodule of M . We define sdepth(D) = mini=1,...,r |Zi| and
sdepthS(M) = max{sdepth(D)| D is a Stanley decomposition of M}. The number sdepthS(M) is called
the Stanley depth of M . In [1], J. Apel restated a conjecture firstly given by Stanley in [15], namely
that sdepthS(M) ≥ depthS(M) for any Zn-graded S-module M . This conjecture proves to be false, in
general, for M = S/I and M = J/I, where I ⊂ J ⊂ S are monomial ideals, see [9].

Herzog, Vladoiu and Zheng show in [10] that sdepthS(M) can be computed in a finite number of steps
if M = I/J , where J ⊂ I ⊂ S are monomial ideals. However, it is difficult to compute this invariant, even
in some very particular cases. In [14], Rinaldo give a computer implementation for this algorithm, in the
computer algebra system CoCoA [8]. However, it is difficult to compute this invariant, even in some very
particular cases. For instance in [2] Biro et al. proved that sdepth(m) = dn/2e where m = (x1, . . . , xn).

Let In and Jn be the edges ideals associated to the n-line, respectively n-cycle, graph. Firstly, we
prove that depth(S/Jn) =

⌈
n−1
3

⌉
, see Proposition 1.3. Alin Ştefan [16] proved that sdepth(S/In) =

⌈
n
3

⌉
.

Using similar techniques, we prove that sdepth(S/Jn) =
⌈
n−1
3

⌉
, for n ≡ 0 (mod 3) and n ≡ 2 (mod 3).

Also, we prove that
⌈
n−1
3

⌉
≤ sdepth(S/Jn) ≤

⌈
n
3

⌉
, for n ≡ 1 (mod 3). See Theorem 1.9. In particular,

S/Jn satisfies the Stanley conjecture. Also, we note that both In and Jn satisfy the Stanley conjecture,
see Corollary 1.5. In Proposition 1.10, we prove that sdepth(Jn/In) = depth(Jn/In) =

⌈
n+2
3

⌉
. In the

second section, we give an upper bound for the Stanley depth of a quotient of two square free monomial
ideals, in combinatorial terms, see Theorem 2.4. Also, we give a lower bound for the Stanley depth of a
quotient of two arbitrary monomial ideals, see Proposition 2.9.

1We greatfully acknowledge the use of the computer algebra system CoCoA ([8]) for our experiments.
2The support from grant ID-PCE-2011-1023 of Romanian Ministry of Education, Research and Inno-

vation is gratefully acknowledged.
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1. Main results

Let n ≥ 3 be an integer and let G = (V,E) be a graph with the vertex set V = [n] and edge set E.
Then the edge ideal I(G) associated to G is the squarefree monomial ideal I = (xixj : {i, j} ∈ E) of S.

We consider the line graph Ln on the vertex set [n] and with the edge set E(Ln) = {(i, i + 1) : i ∈
[n−1]}. Then In = I(Ln) = (x1x2, . . . , xn−1xn) ⊂ S. Also, we consider the cyclic graph Cn on the vertex
set [n] and with the edge set E(Cn) = {(i, i+ 1) : i ∈ [n− 1]} ∪ {(n, 1)}. Then Jn = In + (xnx1) ⊂ S.

We recall the well known Depth Lemma, see for instance [18, Lemma 1.3.9] or [17, Lemma 3.1.4].

Lemma 1.1. (Depth Lemma) If 0 → U → M → N → 0 is a short exact sequence of modules over a
local ring S, or a Noetherian graded ring with S0 local, then

a) depthM ≥ min{depthN, depthU}.
b) depthU ≥ min{depthM,depthN + 1}.
c) depthN ≥ min{depthU − 1,depthM}.

Using Depth Lemma, Morey proved in [11] the following result.

Lemma 1.2. [11, Lemma 2.8] depth(S/In) =
⌈
n
3

⌉
.

In the following, we will prove a similar result for S/Jn.

Proposition 1.3. depth(S/Jn) =
⌈
n−1
3

⌉
.

Proof. We denote Sk := K[x1, . . . , xk], the ring of polynomials in k variables. We use induction on n. If
n ≤ 3 then is an easy exercise to prove the formula. Assume n ≥ 4 and consider the short exact sequence

0 −→ S/(Jn : xn)
·xn−→ S/Jn −→ S/(Jn, xn) −→ 0.

Note that (Jn : xn) = (x1, xn−1, x2x3, . . . , xn−3xn−2) and therefore we get S/(Jn : xn) ∼=
K[x2, . . . , xn−2, xn]/(x2x3, . . . , xn−3xn−2) ∼= (Sn−3/In−3)[xn].

Also, (Jn, xn) = (x1x2, . . . , xn−2xn−1, xn) and therefore S/(Jn, xn) ∼= Sn−1/In−1. By Lemma 1.2, we
get depth(S/(Jn : xn)) =

⌈
n−3
3

⌉
+ 1 =

⌈
n
3

⌉
and depth(S/(Jn, xn)) =

⌈
n−1
3

⌉
. If n ≡ 0 (mod 3) or n ≡ 2

(mod 3), then
⌈
n−1
3

⌉
=
⌈
n
3

⌉
, and, by using Lemma 1.1, we get depth(S/Jn) =

⌈
n−1
3

⌉
, as required.

Assume n ≡ 1 (mod 3). We claim that we have the S-module isomorphism

(Jn : xn)

Jn
∼= xn−1

(
K[x1, . . . , xn−3]

(x1x2, . . . , xn−4xn−3)

)
[xn−1]⊕ x1

(
K[x3, . . . , xn−2]

(x3x4, . . . , xn−3xn−2)

)
[x1].

Indeed, if u ∈ (Jn : xn) is a monomial such that u /∈ Jn, then x1|u or xn−1|u. If xn−1|u, then u = xn−1v
with v ∈ S. Since u /∈ Jn, it follows that v = xαn−1w, with α ≥ 1, w ∈ K[x1, . . . , xn−3] and w /∈
(x1x2, . . . , xn−4xn−3). Similarly, if xn−1 - u, then x1|u and u = xα1w with α ≥ 1, w ∈ K[x3, . . . , xn−2]
and w /∈ (x3x4, . . . , xn−3xn−2).

Using the above isomorphism and Lemma 1.2, it follows that

depth

(
(Jn : xn)

Jn

)
= depth

(
K[x3, . . . , xn−2]

(x3x4, . . . , xn−3xn−2)

)
+ 1 =

⌈
n− 4

3

⌉
+ 1 =

⌈
n− 1

3

⌉
.

Now, using Lemma 1.1 for the short exact sequence 0 → (Jn:xn)
Jn

→ S/Jn → S/(Jn : xn) → 0, we are
done. �

Note that the previous Proposition can be seen as a consequence of [3, Proposition 5.0.6]. However,
we preferred to give a direct proof in order to relate it with the Stanley depth case. Now, we recall the
following result of Okazaki.

Theorem 1.4. [12, Theorem 2.1] Let I ⊂ S be a monomial ideal (minimally) generated by m monomials.
Then:

sdepth(I) ≥ max{1, n−
⌊m

2

⌋
}.

As a direct consequence of Lemma 1.2, Proposition 1.3 and Theorem 1.4, we get.
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Corollary 1.5. sdepth(In) ≥ 1 + n−1
2 and sdepth(Jn) ≥ n

2 . In particular, In and Jn satisfy the Stanley
conjecture.

In [16], Alin Ştefan computed the Stanley depth for S/In.

Lemma 1.6. [16, Lemma 4] sdepth(S/In) =
⌈
n
3

⌉
.

In [13], Asia Rauf proved the analog of Lemma 1.1(a) for sdepth:

Lemma 1.7. Let 0→ U →M → N → 0 be a short exact sequence of Zn-graded S-modules. Then:

sdepth(M) ≥ min{sdepth(U), sdepth(N)}.

Using these lemmas, we are able to prove the following Proposition.

Proposition 1.8. sdepth(S/Jn) ≥
⌈
n−1
3

⌉
. In particular, S/Jn satisfies the Stanley conjecture.

Proof. As in the proof of Proposition 1.3, we consider the short exact sequence

0 −→ S/(Jn : xn)
·xn−→ S/Jn −→ S/(Jn, xn) −→ 0.

Since S/(Jn : xn) ∼= (Sn−2/In−2)[xn] and S/(Jn, xn) ∼= Sn−1/In−1, by Lemma 1.6 and [10, Lemma 3.6],
we get sdepth(S/(Jn : xn)) =

⌈
n−3
3

⌉
+ 1 =

⌈
n
3

⌉
and sdepth(S/(Jn, xn)) =

⌈
n−1
3

⌉
. Using Lemma 1.7, we

get sdepth(S/Jn) ≥
⌈
n−1
3

⌉
, as required. �

Let P ⊂ 2[n] be a poset and P : P =
⋃r
i=1[Fi, Gi] be a partition of P. We denote sdepth(P) :=

mini∈[r] |Di|. Also, we define the Stanley depth of P, to be the number

sdepth(P) = max{sdepth(P) : P is a partition of P}.
We recall the method of Herzog, Vladoiu and Zheng [10] for computing the Stanley depth of S/I and

I, where I is a squarefree monomial ideal. Let G(I) = {u1, . . . , us} be the set of minimal monomial
generators of I. We define the following two posets:

PI := {σ ⊂ [n] : ui|xσ :=
∏
j∈σ

xj for some i } and PS/I := 2[n] \ PI .

Herzog Vladoiu and Zheng proved in [10] that sdepth(I) = sdepth(PI) and sdepth(S/I) = sdepth(PS/I).
Now, for d ∈ N and σ ∈ P, we denote

Pd = {τ ∈ P : |τ | = d} , Pd,σ = {τ ∈ Pd : σ ⊂ τ}.
With these notations, we are able to prove the following result.

Theorem 1.9. (1) sdepth(S/Jn) =
⌈
n−1
3

⌉
, for n ≡ 0 (mod 3) and n ≡ 2 (mod 3).

(2) sdepth(S/Jn) ≤
⌈
n
3

⌉
, for n ≡ 1 (mod 3).

Proof. Using Proposition 1.8, it is enough to prove the ”≤” inequalities. Let P = PS/Jn . Firstly, note

that if σ ∈ P such that Pd,σ = ∅, then sdepth(P) < d. Indeed, let P : P =
⋃r
i=1[Fi, Gi] be a partition of

P with sdepth(P) = sdepth(P). Since σ ∈ P, it follows that σ ∈ [Fi, Gi] for some i. If |Gi| ≥ d, then it
follows that Pσ,d 6= ∅, since there are subsets in the interval [Fi, Gi] of cardinality d which contain σ, a
contradiction. Thus, |Gi| < d and therefore sdepth(P) < d.

We have three cases to study.
1. If n = 3k ≥ 3 and σ = {1, 4, . . . , 3k − 2}, then Pk+1,σ = ∅. Indeed, if u = x1x4 · · ·x3k−2, one can

easily see that u ·xj ∈ Jn for all j ∈ [n] \σ. Therefore, be previous remark, sdepth(S/Jn) = sdepth(P) ≤
k =

⌈
n−1
3

⌉
, as required.

2. If n = 3k + 2 ≥ 5 and σ = {1, 4, . . . , 3k + 1}, then Pk+2,σ = ∅. As above, it follows that
sdepth(S/Jn) ≤ k + 1 =

⌈
n−1
3

⌉
.

3. If n = 3k+ 1 ≥ 7 and σ = {1, 4, . . . , 3k−2, 3k}, then Pk+2,σ = ∅ and therefore sdepth(P) ≤ k+ 1 =⌈
n
3

⌉
. �
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Proposition 1.10. sdepth(Jn/In) = depth(Jn/In) =
⌈
n+2
3

⌉
, for all n ≥ 3.

Proof. One can easily check that J3
I3
∼= x1x3K[x1, x3]. Thus sdepth(J3/I3) = depth(J3/I3) = 2, as

required. Similarly, for n = 4, we have J4
I4
∼= x1x4K[x1, x4] and for n = 5, we have J5

I5
∼= x1x5K[x1, x3, x5].

Now, assume n ≥ 6, and let u ∈ Jn a monomial such that u /∈ In. It follows that u = x1xnv, with
v ∈ K[x1, x3, . . . , xn−2, xn]. We can write v = xα1x

β
nw, with w ∈ K[x3, . . . , xn−2]. Since u /∈ In, it follows

that w /∈ (x3x4, . . . , xn−3xn−2). Therefore, we have the S-module isomorphism:

Jn
In

= x1xn

(
K[x3, . . . , xn−2]

(x3x4, . . . , xn−3xn−2)

)
[x1, xn]

and therefore, by Lemma 1.2, Lemma 1.6 and [10, Lemma 3.6], we get sdepth(Jn/In) = depth(Jn/In) =⌈
n−4
3

⌉
+ 2 =

⌈
n+2
3

⌉
. �

Remark 1.11. If n = 4, one can easily see that sdepth(S/J4) = 1. Also, for n = 7, we can show that
sdepth(S/J7) = 2, see Example 2.5. On the other hand, using the SdepthLib.coc of CoCoA, see [14], we
get sdepth(S/J10) = 4 and sdepth(S/J13) = 5. This remark, yields the following conjecture.

Conjecture 1.12. sdepth(S/Jn) =
⌈
n
3

⌉
, for all n ≥ 10 with n ≡ 1 (mod 3).

Even if Jn and In are closely related, the difficulty of Conjecture 1.12 should not be underestimate.
See for instance [2], where the authors, using fine tools of combinatorics were hardly able to compute the
Stanley depth of the maximal monomial ideal (x1, . . . , xn). In the second section we will give a possible
approach to this problem, see Example 2.5.

2. Bounds for Sdepth of quotient of monomial ideals

Lemma 2.1. Let n ≥ 1 and 0 ≤ k ≤ n be two integers and let P = {σ ∈ 2[n] | |σ| ≤ k}. Then, there
exists a partition P : P =

⋃r
i=1[Ci, Di] with |Di| = k.

Proof. If k = n or k = 0 there is nothing to prove. Assume 1 ≤ k ≤ n− 1. Note that P is the partition
associated to S/In,k+1, where In,k+1 is the ideal generated by all the square free monomials of degree
k + 1. According to [7, Theorem 1.1], sdepth(S/In,k+1) = k and thus we are done. �

Proposition 2.2. Let P ⊂ 2[n] be a poset such that sdepth(P) ≥ k. Then there exists a partition of P,
such that, for each interval [C,D] of it, if |C| < k then |D| = k.

In particular, the above assertion holds, if I ⊂ J are two monomial square-free ideals such that
sdepth(J/I) = k and P = PJ/I := PS/I ∩ PJ .

Proof. According to Herzog, Vladoiu and Zheng [10], we have sdepth(J/I) = sdepth(PJ/I). Since
sdepth(P) ≥ k, we can find a partition of P, such that each interval [C,D] in this partition has |D| ≥ k.

Let [C,D] be an interval of the partition of P. If |C| ≥ s or |D| = s there is nothing to do. Assume
|C| < k and |D| > k. We denote |C| = t and |D| = s. Without losing the generality, we may
assume that D = [s] and C = [s] \ [s − t]. Using the previous Lemma, we can find a partition of
[∅, [s − t]] =

⋃r
i=1[Ci, Di] with |Di| = k − t whenever |Ci| < k − t. Let Ci = C ∪ Ci and Di = C ∪Di.

It follows that [C,D] =
⋃r
i=1[Ci, Di] is a partition with |Di| = k, whenever |Ci| < k. If we apply this

method for each interval in the partition of P, finally, we will get a partition of P, as required. �

Corollary 2.3. Let P ⊂ 2[n] be a poset such that sdepth(P) ≥ k. Denote P≤k = {σ ∈ P |σ| ≤ k}. Then
sdepth(P≤k) = k.

Proof. Obviously, sdepth(P≤k) ≤ k. According to Proposition 2.2, we can find a partition P : P =⋃r
i=1[Fi, Gi] of P such that |Gi| = k, whenever |Fi| < k. Note that

[Fi, Gi] ∩ P≤k =


[Fi, Gi], |Fi| < k,

[Fi, Fi], |Fi| = k,

∅, |Fi| > k
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Therefore, P≤k =
⋃r
i=1[Fi, Gi] ∩ P≤k is a partition of P≤k with its Stanley depth ≥ k. �

Let P ⊂ 2[n] be a poset such that sdepth(P) ≥ k. We denote βt = |{σ ∈ P : |σ| = t}|, for all
0 ≤ t ≤ k.

We consider the poset P≤k := {σ ∈ P : |σ| ≤ k}. By Corollary 2.3, we can find a partition
P : P≤k =

⋃r
i=1[Fi, Gi] with |Gi| = k for all i. We may assume that |Fi| ≤ |Fi+1| for all i ≤ r − 1.

For all 0 ≤ j ≤ k, we denote αj = |{i : |Fi| = j}|. Let [F,G] be an arbitrary interval in the partition

P such that |F | = j for some j ≤ k. Note that in the interval [F,G] we have exactly
(
k−j
t−j
)

sets of

cardinality t. Therefore, we get βt =
∑t
j=0

(
k−j
t−j
)
αj , for all 0 ≤ t ≤ k. Moreover, α0 = β0, α1 = β1− kβ0,

α2 = β2 −
(
k
2

)
α0 − (k − 1)α1 and so on. Thus, we proved the following Theorem.

Theorem 2.4. If sdepth(P) ≥ k, then αt ≥ 0 for all 0 ≤ t ≤ k, where α0 = β0 and αt = βt −∑t−1
j=0

(
k−j
t−j
)
αj.

Note that the above theorem give an upper bound for sdepth(J/I), where I ⊂ J are square free
monomial ideals. Indeed, we can consider the poset P := PJ/I .

Example 2.5. We consider the poset P := PS/Jn , where Jn = (x1x2, . . . , xn−1xn, xnx1) ⊂ S. We claim

that βt =
(
n−t+1

t

)
−
(
n−t−1
t−2

)
, for all 0 ≤ t ≤ n.

Indeed, if σ = {i1, . . . , it} ∈ P is a set of cardinality t such that 1 ≤ i1 < i2 < · · · < it ≤ n, then
ij+1 ≥ ij + 2 and {i1, ik} 6= {1, n}. There are exactly

(
n−t+1

t

)
, t-tuples 1 ≤ i1 < i2 < . . . < it ≤ n with

ij+1 ≥ ij + 2 and exactly
(
n−t−1
t−2

)
, t-tuples 1 = i1 < i2 < · · · < it = n with ij+1 ≥ ij + 2. (To be more

clear, if we denote lj := ij − j+ 1, we have 1 ≤ l1 ≤ l2 ≤ · · · ≤ lt ≤ n− t+ 1 with lj+1 > lj , and there are

exactly
(
n−t+1

t

)
, t-tuples like this. If we fix l1 = 1 and lt = n− t+ 1, we have 2 ≤ l2 ≤ · · · ≤ lt−1 ≤ n− t

and there are exactly
(
n−t−1
t−2

)
, t− 2-tuples like this).

Now, for n = 7, one can easily check that β0 = 1, β1 = 7, β2 = 14 and β3 = 7. For k = 3, we have
α0 = 1, α1 = 4, α2 = 2 and α3 = −1. This shows, in the light of Theorem 2.4, that we cannot find a
decomposition of the poset associated to S/J7 with its Stanley depth equal to 3. On the other hand, by
Proposition 1.8, we have sdepth(S/J7) ≥ 2, and thus sdepth(S/J7) = 2.

For n = 3k − 2, where k ≥ 4, we expect that α0, . . . , αk are nonnegative, which is indeed the case for
small values of k, using computer experimentation. However, this is useful only as an heuristic method
to estimate the Stanley depth of S/Jn. In order to compute exactly this invariant, one has to produce a
concrete partition of the associated poset.

In the second part of this section, we give a lower bound for the Stanley depth of a quotient of monomial
ideals in terms of the minimal number of monomial generators. First, we recall several results.

Proposition 2.6. [4, Proposition 1.2] Let I ⊂ S be a monomial ideal (minimally) generated by m
monomials. Then sdepth(S/I) ≥ n−m.

Proposition 2.7. [5, Remark 2.3] Let I, J ⊂ S be two monomial ideals. Then
sdepth((I + J)/I) ≥ sdepth(J) + sdepth(S/I)− n.

Lemma 2.8. Let I, L ⊂ S be two monomial ideals such that L is minimally generated by some monomials
w1, . . . , ws which are not in I. Then B = {w1 + I, . . . , ws + I} is a system of generators of J/I, where
J := L+ I.

Proof. Denoting G(I) = {v1, . . . , vp}, it follows that J = (v1, . . . , vp, w1, . . . , wr). So, if w ∈ J \ I is a
monomial, then wj |w for some j ∈ [r] and therefore B is a system of generators for J/I. On the other
hand, since w1, . . . , wr minimally generated L, we get the minimality of B. �

We consider I ⊂ J ⊂ S two monomial ideals. Denote G(I) = {v1, . . . , vp} and G(J) = {u1, . . . , uq}
the sets of minimal monomial generators of I and J . If u1 ∈ I, then we may assume that v1|u1. On the
other hand, I ⊂ J and therefore, there exists an index i such that ui|v1.
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We get ui|u1 and thus ui = u1 = v1. Using the same argument, we can assume that there exists an
integer r ≥ 0 such that u1 = v1, . . . , ur = vr and ur+1, . . . , uq /∈ I. By Lemma 2.8, {ur+1 + I, . . . , uq + I}
is a set of generators of J/I. With these notations, we have the following result, which is similar to [6,
Theorem 2.4].

Proposition 2.9. sdepth(J/I) ≥ n− p−
⌊
q−r
2

⌋
.

Proof. Denote J ′ = (ur+1, . . . , uq). Note that J/I = (I+J ′)/I. By Proposition 2.7, we get sdepth(J/I) ≥
sdepth(J ′) + sdepth(S/I)− n. By Theorem 1.4 and Proposition 2.6 we are done. �
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