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Abstract

We define vertex cover algebras for weighted simplicial multicomplexes and prove
basics properties of them. Also, we describe these algebras for multicomplexes which
have only one maximal facet and we prove that they are finitely generated.
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Introduction

We denote by N the set of nonnegative integers. Let a, b ∈ Nn be two vectors. We say
that a ≤ b if a(i) ≤ b(i) for all i ∈ [1, n], where a = (a(1), . . . , a(n)) and b = (b(1), . . . , b(n)).

Stanley [3] calls a subset Γ ⊂ Nn a multicomplex if for all a ∈ Γ and all b ∈ Nn with
b ≤ a, it follows that b ∈ Γ. Herzog and Popescu in [1] extended this definition as follows.
Denote N∞ = N ∪ {∞} and set k ≤ ∞ for all k ∈ N. A subset Γ ⊂ Nn

∞ is called a
multicomplex, if the following two conditions hold:

(1) for all a ∈ Γ and all b ∈ Nn
∞ with b ≤ a, it follows that b ∈ Γ.

(2) for each a ∈ Γ there exists m ∈ M(Γ) with a ≤ m, where M(Γ) is the set of
maximal elements in Γ, with respect to ≤.

The elements of Γ are called facets and the elements ofM(Γ) are called maximal facets.
One can easily see that M(Γ) is a nonempty finite subset of Γ. Moreover, Γ = {a ∈ Nn

∞ :
a ≤ m for some m ∈M(Γ)}.

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K. Let Γ be a
multicomplex, and let I(Γ) be the K − subspace in S spanned by all monomials xa :=

x
a(1)
1 · · ·xa(n)

n such that a /∈ Γ. Note that I(Γ) is a monomial ideal. Conversely, given
an arbitrary monomial ideal I ⊂ S, there is a unique multicomplex Γ with I = I(Γ).
According to [1, Corollary 9.8], Γ is the unique smallest multicomplex containing the set
A = {a : xa /∈ I}.

Herzog, Hibi and Trung introduced in [2] the notion of vertex cover algebras for weighted
simplicial complexes. In this paper, we extend that concept for simplicial multicomplexes.
Herzog, Hibi and Trung proved that the vertex cover algebras are finitely generated, but
this is not the case, in general, for multicomplexes, as Example 1.1 shows. We describe
the vertex cover algebras for multicomplexes which have only one maximal facet. More
precisely, we show how we can reduce to the case when the maximal facet is a vector in Nn

with all entries nonzero, see Theorem 1.6. Also, we prove that these algebras are finitely
generated.

1This work was supported by a grant of the Romanian National Authority for Scientific Research,
CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-1023.
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1 Vertex cover algebras of simplicial multicomplexes

Let Γ ⊂ Nn
∞ be a multicomplex and letM(Γ) be the set of maximal facets of Γ. Consider

a function
ω :M(Γ)→ N \ {0}, m 7→ ωm

that assigns to each maximal facet a positive integer. In this case, Γ is called a weighted
multicomplex, denoted by (Γ, ω). We call a ∈ Nn a vertex cover of (Γ, ω) of order k if:

n∑
i=1

a(i)m(i) ≥ kωm, for all m ∈M(Γ),

where we define 0 · ∞ := 0. The canonical weight function on a multicomplex Γ is the
weight function ω0(m) = 1 for all maximal facets m ∈M(Γ).

Let S[t] be a polynomial ring over S in the indeterminate t, and consider the K-vector

space Ak(Γ, ω) ⊂ S[t] generated by all monomials x
a(1)
1 · · ·xa(n)

n tk such that a ∈ Nn is a
vertex cover of Γ of order k. We define

A(Γ, ω) =
⊕
k≥0

Ak(Γ, ω) with A0(Γ, ω) = S.

If a is a vector cover of order k, and b is a vector cover of order l, one can easily see that
a+ b is a vertex cover of order k+ l. This implies that Ak(Γ, ω) ·Al(Γ, ω) ⊂ Ak+l(Γ, ω) and
therefore A(Γ, ω) is a graded S-algebra. We call it the vertex cover algebra of the weighted
simplicial multicomplex (Γ, ω). For simplicity, we will use the notation A(Γ) for A(Γ, ω0).

Example 1.1. Let Γ = {a : a ≤ (0,∞) or a ≤ (2, 0)} ⊂ N2
∞. The set of maximal facets of

Γ is M(Γ) = {(0,∞), (2, 0)}. We consider the canonical weight function on Γ. According
to the definition, a vector a ∈ N2 is a vertex cover of order k ≥ 1, if and only if 2a(1) ≥ k

and a(2) ≥ 1. Therefore, A(Γ) = K[x1, x2]⊕
⊕

k≥1 x
[ k+1

2 ]
1 x2t

kK[x1, x2].
We claim that A(Γ) is not a finitely generated S-algebra. Indeed, if for each k ≥ 1,

we denote uk := x
[ k+1

2 ]
1 x2t

k, one can easily check that each uk is not an element of
S[u1, . . . , uk−1].

Let a ∈ Nn
∞ and consider Γ(a) the unique smallest multicomplex containing a. Accord-

ing to [1, Corollary 9.8], Γ(a) is well defined, and moreover, Γ(a) = {b ∈ Nn
∞ : b ≤ a}.

Let ω be a weight on Γ(a), i.e. we give a positive integer ωa. Our next goal is to describe
the vertex cover algebra A(Γ(a), ω).

Note that M(Γ(a)) = {a}. A vector a ∈ Nn is a vertex cover of degree k ∈ N for
(Γ(a), ω), if and only if a(1)b(1) + a(2)b(2) + · · · a(n)b(n) ≥ ωak. If a(j) = ∞, for some
j ∈ [1, n], then any vector b ∈ Nn with b(j) > 0, is a k-vertex cover for (Γ(a), ω) for
any k ≥ 0. If a(j) = 0, for some j ∈ [1, n], then b(j) does not contribute to the sum∑n

i=1 a(i)b(i). We consider two extreme cases:
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(1) a = (∞, . . . ,∞). In this case, any b ∈ Nn \ {(0, . . . , 0)} is a k-vertex cover for
(Γ(a), ω), for any k ≥ 0. Also, (0, . . . , 0) is a 0-vertex cover, but is not a k-vertex cover for
k ≥ 1. It follows that A((Γ(a), ω)) = S ⊕ t(x1, . . . , xn)S[t] = S[t].

(2) a = (0, . . . , 0). In this case, Γ(a) has no k-vertex covers for k ≥ 1. Therefore,
A(Γ(a), ω) = S.

Assume a ∈ Nn
∞ is not in any of the above cases. Without losing generality, we can

assume a = (a(1), . . . , a(r),∞, . . . ,∞), where r ≤ n is a positive integer. Indeed, in order
to compute A((Γ(a), ω)), we may permute the variables, and we reduce to this case. Assume
r > 0. We denote ã = (a(1), . . . , a(r)) ∈ Nr and we consider the weight ω̃ on Γ(ã), defined
by ω̃(ã) := ωa. With these notations, we have the following lemma.

Lemma 1.2. Let k be a positive integer and b ∈ Nn. Denote b̃ = (b(1), . . . , b(r)) ∈ Nr.
(i) If b̃ is a k-vertex cover for (Γ(ã), ω̃), then b is a k-vertex cover for (Γ(a), ω).
(ii) If b = (b̃, 0, . . . , 0) is a k-vertex cover for (Γ(a), ω), then b̃ is a k-vertex cover for

(Γ(ã), ω̃).

Proof. (i) Since (̃b) is a k-vertex cover for (Γ(ã), ω̃), it follows that a(1)b(1)+· · ·+a(r)b(r) ≥
k · ω̃ã = k · ωa. Therefore, a(1)b(1) + · · ·+ a(r)b(r) + · · ·+ a(n)b(n) ≥ k · ωa, and thus b is
a k-vertex cover for (Γ(a), ω).

(ii) the proof is similar to (i).

Proposition 1.3. A(Γ(a), ω) ∼= S ⊕ t(A(Γ(ã), ω̃)⊕ (xr+1, . . . , xn)S[t]).

Proof. Let b ∈ Nn and fix a positive integer k. Note that if b(j) > 0 for some j > r, then b is
a k-vertex cover for A(Γ(a), ω). Indeed, in this case,

∑n
i=1 a(i)b(i) ≥ a(j)b(j) =∞ > kωa.

On the other hand, according to the previous lemma, if b(j) = 0 for all j > r, then b is a k-
vertex cover for A(Γ(a), ω) if and only if b̃ = (b(1), . . . , b(r)) is a k-vertex cover for (Γ(ã), ω̃).
It follows that A(Γ(a), ω)k ∼= A(Γ(ã), ω̃)k ⊕ (xr+1, . . . , xn)S. Since A(Γ(a), ω)0 = S, we get
the conclusion.

The above proposition shows that we can reduce to the case when a ∈ Nn \{(0, . . . , 0)}.
By reordering the variables, we can assume that a = (a(1), . . . , a(p), 0, . . . , 0), where p > 0
and a(j) > 0 for any j ≤ p. We denote ā = (a(1), . . . , a(p)) ∈ Nn and we consider the
weight ω̄ on Γ(ā), defined by ω̄(ā) := ωa. With these notations, we have the following
lemma.

Lemma 1.4. Let k be a positive integer and b ∈ Nn. Denote b̄ = (b(1), . . . , b(p)) ∈ Np.
Then b is a k-vertex cover for (Γ(a), ω) if and only if b̄ is a k-vertex cover for (Γ(ā), ω̄).

Proof. Indeed, since a(p + 1) = · · · = a(n) = 0, we have
∑n

i=1 a(i)b(i) =
∑p

i=1 a(i)b(i) and
therefore we get the required conclusion.

As a direct consequence of the previous lemma, we get the following proposition.

Proposition 1.5. A(Γ(a), ω) = A(Γ(ā), ω̄)[xp+1, . . . , xn].
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Theorem 1.6. Suppose after renumbering that a(i) ∈ N \ {0} for 1 ≤ i ≤ p, a(i) = 0 for
p < i ≤ r and a(i) =∞ for r < i ≤ n and let ā = (a(1), . . . , a(p)). Then:

A(Γ(a);ω) = S ⊕ t(A(Γ(ā), ω̄)[xp+1, . . . , xr]⊕ (xr+1, . . . , xn)S[t]).

Moreover, A(Γ(a);ω) is a finitely generated S-algebra.

Proof. The decomposition of A(Γ(a);ω) is a direct consequence of Proposition 1.3 and
Proposition 1.5. For the second statement, using the above decomposition, it is enough to
consider the case when a ∈ Nn such that a(i) > 0 for all i. Let k ≥ (a(1) + · · · a(n) + 1) ·ωa

be an integer and let b ∈ Nn be a k-vertex cover of A(Γ(a);ω), i.e.
∑n

i=1 a(i)b(i) ≥ k · ωa.
Since k ≥ (a(1) + · · · a(n) + 1) · ωa, it follows that the set I := {i ∈ [1, n] : b(i) > ω}

is nonempty. We define the vector b′ ∈ Nn, by b′(i) := b(i) − ωa for i ∈ I and b′(i) = b(i)
otherwise. Let b′′ := b − b′, k′ = k − |I| and k′′ := |I|. One can easily check that b′ is
a k′-vertex cover and b′′ is a k′′-vertex cover. It follows that A(Γ(a);ω) is generated, as
S-algebra, by the monomials from A(Γ(a);ω)l for 1 ≤ l ≤ (a(1) + · · · a(n) + 1) ·ωa− 1.

We end our paper with the following example.

Example 1.7. Let 1 = (1, . . . , 1) ∈ Nn and ω(1) := ω1 a positive integer. A k-vertex
cover for (Γ(1), ω), is a vector b ∈ Nn such that b(1) + · · · + b(n) ≥ k · ω1. It follows that
A(Γ(1), ω)k = (x1, . . . , xn)k·ω1 and therefore

A(Γ(1), ω) = S ⊕ (
⊕
k≥1

(x1, . . . , xn)k·ω1tk).

Note that xω1
1 t, . . . , xω1

n t is a finite system of generators for A(Γ(1), ω) as S-algebra.
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