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Introduction
Let K be a perfect field and let K be a fixed algebraic closure of K. Let S be the K-vector space of

all sequences f : N → K with entries in K and let S = S ⊗K K be the K-vector space of all sequences
g : N → K with entries in K. Let T : S → S, T (f)(n) = f(n + 1), n ∈ N be the usual simple shift
operator on S. We also denote by T the extension of the simple shift operator to S. For any a1, a2, ..., ak,
k elements of K, the operator

L = T k + a1T
k−1 + ...+ akI,

where I is the identity operator on S, is called a k-order linear shift operator on S. We denote by L its
canonical extension to S. A recurrent sequence f of S is an element in kerL for a linear shift operator L.
In Theorem 1.5 and Remark 1.10 we recall (see also [8]) the structure of kerL and of kerL as a vector
subspaces of S and of S respectively. In Propositions 1.7, 1.8, 1.9 we also recall (see also [8]) the structure
of all solutions of the inhomogenous equation L(f) = g, where f, g ∈ S. For a fixed recurrent sequence
f ∈ S, a minimal linear shift operator of f is a linear shift operator L0 with a minimal order k0 such that
f ∈ kerL0. In Proposition 2.2 we prove that if L is any other linear shift operator with f ∈ kerL, then L
is a multiple (relative to the extension by linearity of the multiplication T 2 = T ◦ T ) of L0 and that this
minimal linear shift operator L0 is unique (see also [7]).

In Theorem 2.5 we prove that (with respect to the above multiplication ”◦”) if L = L1 ◦ L2 ◦ ... ◦ Lh
is a factorization of L into linear shift operators (over K) of orders greater or equal to 1, then kerL =∑h
i=1 kerLi and this sum is a direct one.
In Theorem 2.7 we give the structure of kerL in language of the kernels of the irreducible factors of L

in the factorial ring K[T ] (see also [7]).
In Section 3 we give a criterion to say when an element from kerL is an element in kerL (Theorem

3.1). As a consequence of this criterion we prove that the Hadamard product between two recurrent
sequences is again a recurrent sequences (Corollary 3.3). This result was proved in many other papers
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(see [1]). However, our methods used to study some arithmetical properties of the recurrent sequences
over different extensions of fields can be used for other purposes.

During the study which follows, we used some ideas of the following basic works: [1] and [3]-[10].

1. Notation, definitions and basic results

In this section we rewrite some basic facts from [8] in our context with slight modifications. Sometimes,
when the proofs of our results are relevant for what follows, we give them. Usually, for the proofs of the
known results we send the reader to [8] for instance.

Let K be a commutative field (finite or not) and let K be a fixed algebraic closure of it. Let S be
the set of all sequences {an}n∈N with entries an, n ∈ N, in K, i.e. the set of all functions f : N → K.
When we speak of f ∈ S, where f : N → K, we mean that the sequence {f(n)}n∈N ∈ S. It is clear how
S, become (infinite dimensional) vector space over the field K. In fact all operations are componentwise
operations.

The linear operator T : S → S, T (f) = g, where g(n) = f(n + 1) is called the simple shift operator
of S. If we write {an} we usually mean {an}n∈N. We denote T k = T ◦ T ◦ ... ◦ T︸ ︷︷ ︸

k−times

, so T k(f) = g, where

g(n) = f(n+ k) for n = 0, 1, ... .
It is easy to see that KerT k = {(xn)n : xk = xk+1 = ... = 0}, i.e. dimK KerT

k = k. Let now
a1, a2, ..., ak be k fixed elements in K and let us denote by I : S → S the identity operator on S:
I(f) = f . The linear operator

(1.1) L = T k + a1T
k−1 + ...+ ak−1T + akI

defined on S is called a k-order linear shift operator on S. The equation

(1.2) L(f) = g

is called a k-order (linear) algebraic equation with shift operators. If g = 0, the equation (1.2) is said to
be homogeneous; otherwise it is called an inhomogeneous equation with shift operators.

Let us denote by Sol = kerL, the vector subspace of S consisting of all solutions f : N → K of the
equation L(f) = 0. If {xn}n∈N ∈ Sol, then

(1.3) xn+k = −a1xn+k−1 − a2xn+k−2 + ...+ ak−1xn+1 + akxn,

for any n = 0, 1, ... . Such a sequence is called a recurrent sequence over K and k is called a period of
{xn}n∈N. It is clear that a recurrent sequence of period k is completely determined by the first k terms
x0, ..., xk−1 of it. The problem is to find the general term xn of such a sequence and the structure of all
of them. We remark that if ak 6= 0, there exists a unique recurrent sequence {xn}n∈N in S which satisfies
the relation

xn+k = −a1xn+k−1 − a2xn+k−2 + ...+ ak−1xn+1 + akxn

for any n ∈ N and with x0, ..., xk−1 given in K.
We can assume that ak 6= 0, otherwise, denoting yn = xn+1, n = 0, 1, ..., we see that the recurrence

relation (1.3) becomes:

(1.4) yn+k−1 = −a1yn+k−2 − a2yn+k−3 + ...+ ak−1yn,

i.e. the sequence {yn}n∈N belongs to the kernel of the shift operator

L1 = T k−1 + a1T
k−2 + ...+ ak−1I.

If ak−1 = 0, we go on to diminish the period by substituting the sequence {yn}n∈N with {zn}n∈N, where
zn = yn+1, etc. If all a1, ..., ak are zero, the initial sequence {xn}n∈N is a constant sequence, a trivial
case in our study. If k = 3, a1 = 1 and a2 = 0, then, in (1.4) xn+3 = xn+2 + xn+1 and the sequence
yn = xn+1 is a Fibonacci type sequence ([6]). This means that the first three terms x0, x1, x2 are ”free”
and x3 = x2 + x1, x4 = x3 + x2, etc., i.e. from the second rank on, the sequence is a Fibonacci sequence.



The term x0 is free of any recurrence relation, i.e. it is not involved in such a relation. This is an example
of a mixed recurrence sequence, i.e. of a sequence of the form:

(1.5) (x0, x1, ..., xl−1, 0, 0, ...) + (0, 0, ..., 0, yl, yl+1, ...),

where x0, x1, ..., xl−1 are arbitrary elements in K and

(0, 0, ..., 0, yl, yl+1, ...)

is a recurrent sequence of period, say k > l, which is in the kernel of a shift operator of the form:

M = (T k−l + a1T
k−l−1 + ...+ ak−lI) ◦ T l, ak−l 6= 0.

The sequence zn = yl+n, n = 0, 1, ..., is a recurrent sequence which is in the kernel of the shift operator
T k−l + a1T

k−l−1 + ...+ ak−lI. This is why the study of the kernel of a shift operator can be reduced to
the case when ak 6= 0.

We associate with the equation L(f) = 0 a polynomial equation in a variable r :

(1.6) P (r) = rk + a1r
k−1 + ...+ ak−1r + ak = 0,

where P (r) ∈ K[r] is a polynomial of degree k with coefficients in the initial field K and ak 6= 0, i.e. r = 0
is not a root for P (r). This polynomial is called the characteristic polynomial of the operator L. The
polynomial equation P (r) = 0 is called the characteristic equation of L. If r1 6= 0 is a solution (in K) of

the characteristic equation, then the sequence (in fact, a geometrical progression of ratio r1)
{
x
[1]
n

}
n∈N

,

where x
[1]
n = rn1 , is a solution of the shift operator equation L(f) = 0. If the characteristic polynomial

is irreducible over K, then all its solutions are not zero, except the trivial case P (r) = r, which is not
considered here.

Proposition 1.1. (see also [8], 2.3) With the above notation and definitions, if r1, r2, ..., rt are distinct

roots (in K) of the characteristic equation P (r) = 0, then their corresponding sequences
{
x
[j]
n

}
n∈N

,

j = 1, 2, ..., t, defined above, are linear independent elements in S, over K. Here S = S ⊗K K, i.e. the
K-vector space of all sequences {xn}n∈N, where xn ∈ K for all n ∈ N.

Lemma 1.2. (see also [8], 2.3) Let P1(x), ..., Pl(x) ∈ K[x] be l ≥ 2 nonzero polynomials with coefficients

in K and let s1, ..., sl, l ≥ 2, be l distinct elements in K. Let
{
x
[j]
n = snj

}
n∈N

, j = 1, ..., l be the corre-

sponding geometrical progression sequences defined by s1, ..., sl. Then the sequences
{
y
[j]
n = Pj(n)x

[j]
n

}
n∈N

,

j = 1, ..., l are linear independent elements in the vector space S = S ⊗K K.

Proposition 1.3. (see also [8], 2.3) Let r1 6= 0 (for instance if P (r) is irreducible) be a root of algebraic
multiplicity m1 > 1 of the characteristic polynomial P (r) from (1.6) and let P1(x) ∈ K[x] be a polynomial

of degree < m1. Then the sequence {xn = P1(n)rn1 }n∈N is in kerL and the sequences
{
x
[j]
n = njrn1

}
n

,

j = 0, 1, ...,m1 − 1 are linear independent elements in kerL.

Let

P (r) = (r − r1)m1(r − r2)m2 ...(r − rl)ml

be the factorization of the characteristic polynomial P (r) (see (1.6)) into linear factors, where r1, ..., rl
are the distinct roots of P (r) = 0 in K and m1 + ...+ml = k is the degree of P (r).

Let Bi =
{

(rni )n, (nr
n
i )n, ..., (n

mi−1rni )n
}
, i = 1, 2, ..., l be l subsets of elements in kerL (see Proposition

1.3).

Proposition 1.4. (see also [8]) With the above notation and notions, the set B = B1 ∪ B2 ∪ ... ∪ Bl of
elements in kerL is linear independent over K.



Theorem 1.5. (see also [8]) The set B = B1 ∪ B2 ∪ ... ∪ Bl is a basis for the vector subspace kerL. In
particular, dim kerL = k, the degree of the characteristic polynomial P (r). Moreover, any element {xn}n
of kerL is a linear combination of the form:

(1.7) {xn}n =
{
A

[n]
0

}
n
x0 +

{
A

[n]
1

}
n
x1 + ...+

{
A

[n]
k−1

}
n
xk−1,

where
{
A

[n]
0

}
n
,
{
A

[n]
1

}
n
, ...,

{
A

[n]
k−1

}
n

is a canonical basis (over K) in kerL which corresponds to the

particular values

(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, 0, ..., 0, 1)

respectively, given to (x0, x1, x2, ..., xk−1). In particular, the sequence {xn}n is obviously completely de-
termined by the first k values x0, x1, x2, ..., xk−1 of it.

Proof. Since B is linear independent (see Proposition 1.4) and since it has k elements, it is sufficient to
prove that dim kerL ≥ k. We shall construct k generators in kerL and the statement of the theorem will
be completely proved at that moment. For this, let {xn}n be a sequence in kerL. Thus,

(1.8) xn+k = −a1xn+k−1 − a2xn+k−2 − ...− ak−1xn+1 − akxn
for any n = 0, 1, ... (see (1.1)). For n = 0, we get

(1.9) xk = −a1xk−1 − a2xk−2 − ...− ak−1x1 − akx0.

Let us denote: A
[k]
k−1 = −a1, A[k]

k−2 = −a2, .., A[k]
0 = −ak. Thus, (1.9) can be rewritten as:

(1.10) xk = A
[k]
0 x0 +A

[k]
1 x1 + ...+A

[k]
k−2xk−2 +A

[k]
k−1xk−1.

For n = 1 in (1.8) we get:

xk+1 = −a1xk − a2xk−1 − ...− ak−1x2 − akx1 =

= −a1(−a1xk−1 − a2xk−2 − ...− ak−1x1 − akx0)−
−a2xk−1 − ...− ak−1x2 − akx1 =

= A
[k+1]
0 x0 +A

[k+1]
1 x1 + ...+A

[k+1]
k−2 xk−2 +A

[k+1]
k−1 xk−1,

where A
[k+1]
0 = a1ak, A

[k+1]
1 = a1ak−1 − ak, A[k+1]

2 = a1ak−2 − ak−1, ..., A[k+1]
k−2 = a1a2 − a3, A[k+1]

k−1 =

a21 − a2. Assume that we just constructed A
[j]
0 , A

[j]
1 , ..., A

[j]
k−1, j = k, 1, ..., k + n − 1. Let us construct

A
[k+n]
0 , A

[k+n]
1 , ..., A

[k+n]
k−1 . Since

xk+n−1 = A
[k+n−1]
0 x0 +A

[k+n−1]
1 x1 + ...+A

[k+n−1]
k−2 xk−2 +A

[k+n−1]
k−1 xk−1,

where A
[k+n−1]
0 , A

[k+n−1]
1 , ..., A

[k+n−1]
k−1 are polynomials in a1, a2, ..., ak, and since

xk+n = −a1xk+n−1 − a2xk+n−2 − ...− ak−1xn+1 − akxn =

= −a1
[
A

[k+n−1]
0 x0 +A

[k+n−1]
1 x1 + ...+A

[k+n−1]
k−2 xk−2 +A

[k+n−1]
k−1 xk−1

]
−

−a2
[
A

[k+n−2]
0 x0 +A

[k+n−2]
1 x1 + ...+A

[k+n−2]
k−2 xk−2 +A

[k+n−2]
k−1 xk−1

]
−

−...− ak−1
[
A

[n+1]
0 x0 +A

[n+1]
1 x1 + ...+A

[n+1]
k−2 xk−2 +A

[n+1]
k−1 xk−1

]
−

−ak
[
A

[n]
0 x0 +A

[n]
1 x1 + ...+A

[n]
k−2xk−2 +A

[n]
k−1xk−1

]
=

= A
[k+n]
0 x0 +A

[k+n]
1 x1 + ...+A

[k+n]
k−2 xk−2 +A

[k+n]
k−1 xk−1,

where

(1.11) A
[k+n]
t = −a1A[k+n−1]

t − a2A[k+n−2]
t − ...− akA[k+n−k]

t , t = 0, 1, ..., k − 1.



We see from this last formula that the sequences
{
A

[n]
t

}
n∈N

, where A
[j]
t = 0, j = 0, 1, ..., k − 1, except

j = t, when A
[t]
t = 1, belong to kerL and they make up a generator system for kerL over K. Since

dim kerL ≥ k, we obtain that dim kerL = k. From

(1.12) xk+n = A
[k+n]
0 x0 +A

[k+n]
1 x1 + ...+A

[k+n]
k−2 xk−2 +A

[k+n]
k−1 xk−1

we also see that
{
A

[n]
0

}
n
, ...,

{
A

[n]
k−1

}
n

is a canonical basis of kerL. It is obtained by making x0 = 1,

x1 = 0, ..., xk−1 = 0; x0 = 0, x1 = 1, x2 = 0, ..., xk−1 = 0, etc. in (1.12). In fact, we do not need to prove

that
{
A

[n]
0

}
n
, ...,

{
A

[n]
k−1

}
n

are elements in kerL. It is sufficient to see that kerL is a subspace in the

vector subspace (of S+) generated by
{
A

[n]
0

}
n
, ...,

{
A

[n]
k−1

}
n
. Since the dimension of kerL is at least k

and from this last remark it is at most k, we easily derive that dim kerL = k. �

Remark 1.6. If we look at the recurrent sequence {xn}n∈N ∈ kerL as a sequence in S = S⊗KK, it can

be uniquely described as a sum of the form: {xn}n∈N =
∑l
i=1 {Pi(n)rni }n∈N , where r1, ..., rl are all the

distinct roots of the characteristic polynomial P (r) of the shift operator L = T k+a1T
k−1+...+ak−1T+akI

and Pi(r) ∈ K[r] are polynomials of degree at most mi − 1, mi being the algebraic multiplicity of the
root ri, i = 1, 2, ..., l. If we look at the recurrent sequence {xn}n∈N ∈ kerL as a sequence in S, i.e. with

entries in K, it can be uniquely described as a sum of the form: {xn}n∈N =
{
A

[n]
0

}
n
x0 +

{
A

[n]
1

}
n
x1 +

...+
{
A

[n]
k−1

}
n
xk−1 (see 1.7) where, this time,

{
A

[n]
0

}
n
, ...,

{
A

[n]
k−1

}
n

is a basis of recurrent sequences in

kerL with entries in K itself. The problem is that we cannot easily describe the general term of each of

these sequences
{
A

[n]
j

}
n
, j = 0, 1, ..., l. For instance, for the Fibonacci sequence

(1.13) {x0, x1, x1 + x0, ..., xn = xn−1 + xn−2, ...},

x0, x1 ∈ K, the periodic sequences
{
A

[n]
0

}
n
,
{
A

[n]
1

}
n

are also Fibonacci sequences obtained from the

general formula (1.13) by making x0 = 1, x1 = 0 and x0 = 0, x1 = 1, respectively. Thus,{
A

[n]
0

}
n

= {1, 0, 1, 1, 2, 3, 5, 8, ...},{
A

[n]
1

}
n

= {0, 1, 1, 2, 3, 5, 8, ...}.

In the next section we shall see how to construct new other bases for kerL, starting from its basis over K,
more exactly over K[r1, ..., rl], the subfield of K generated by all roots of the characteristic polynomial
P (r).

A Cauchy problem for the linear algebraic shift operator homogeneous equation L(f) = 0 (here L is
a fixed proper (ak 6= 0) linear shift operator) is that of finding a solution f ∈ S of it, if we know the
”initial” k values of f : f(0) = y0, ..., f(k − 1) = yk−1.

Proposition 1.7. The above Cauchy problem for the equation L(f) = 0 with the initial conditions
f(0) = y0, ..., f(k − 1) = yk−1 has a unique solution over K, i.e. in S, namely

f(n) = A
[n]
0 y0 +A

[n]
1 y1 + ...+A

[n]
k−1yk−1, n = 0, 1, ...,

where
{
A

[n]
0

}
n
, ...,

{
A

[n]
k−1

}
n

is the canonical basis constructed during the proof of Theorem 1.5 and during

the discussion in Remark 1.6.

Proof. The proof is obvious in view of the proof of Theorem 1.5. �



Proposition 1.8. The inhomogeneous equation L(f) = g, with f unknown in S, g known in S and with
the initial conditions

f(0) = y∗0 , ..., f(k − 1) = y∗k−1,

has a unique solution in S.

Proof. Let g = {yn}n∈N be a given sequence in S, i.e. with entries in K. We define f = {xn}n∈N in the
following way:

(1.14) x0 = y∗0 , ..., xk−1 = y∗k−1,

But L(f) = g is equivalent to

xn+k + a1xn+k−1 + a2xn+k−2 + ...+ ak−1xn+1 + akxn = yn,

for any n = 0, 1, ... . So

xn+k = yn − a1xn+k−1 − a2xn+k−2 − ...− ak−1xn+1 − akxn,

for any n = 0, 1, ... . The solution is obviously unique. �

A particular solution for the above equation L(f) = g is obtained by taking y∗0 = 0, ..., y∗k−1 = 0 in
(1.14). It is of the form:

(1.15) fp = {x[p]n }n∈N =

0, 0, ..., 0︸ ︷︷ ︸
k−times

, y0, y1 − a1y0, y2 − a1y1 + a21y0 − a2y0, ...

 ,

We can use this last particular solution fp to find the structure of all solutions of the equation L(f) = g.

Proposition 1.9. Let
{
A

[n]
0

}
n
, ...,

{
A

[n]
k−1

}
n

be the canonical basis of kerL constructed during the proof

of Theorem 1.5 and let fp be a particular solution of the inhomogeneous equation L(f) = g. Then any
solution of this last equation in S, i.e. over K, is of the form:

(1.16) f = fp + C0

{
A

[n]
0

}
n

+ C1

{
A

[n]
1

}
n

+ ...+ Ck−1

{
A

[n]
k−1

}
n
,

where C0, ..., Ck−1 are arbitrary elements in K. Moreover, with the notation and definitions used in
Remark 1.6, any solution of the equation L(f) = g, where g is a sequence over K (or over K[r1, ..., rl]),
is of the form:

(1.17) f = fp +

l∑
i=1

{Pi(n)rni }n∈N ,

where Pi(x) ∈ K (or K[r1, ..., rl]) is an arbitrary polynomial of degree mi − 1, if mi is the algebraic
multiplicity of the root ri of the characteristic polynomial P (r), for any i = 1, 2, ..., l.

Proof. Let f1 be a solution of L(f) = g. Then L(f1) = g and L(fp) = g. Subtracting the last equality

from the first one, we get: L(f1−f) = 0, i.e. f1−f ∈ kerL, so it is of the form C0

{
A

[n]
0

}
n

+C1

{
A

[n]
1

}
n

+

...+ Ck−1

{
A

[n]
k−1

}
n

or, if we work over K, of the form
∑l
i=1 {Pi(n)rni }n∈N , etc. �

Remark 1.10. All the above theory can be extended from sequences of S to sequences f ∈ S̃, i.e. to
complete sequences f : Z→ K. Let L be a shift operator as in formula (1.1). Then f = {xn}n∈Z belongs
to kerL if and only if

xn+k = −a1xn+k−1 − a2xn+k−2 − ...− ak−1xn+1 − akxn, ak 6= 0,



for any n ∈ Z. This recurrence relation completely defines the whole sequence {xn}n∈Z if we have the
”positive part” f+ = {xn}n∈N of it. Indeed,

x−1 = − 1

ak
[xk−1 + a1xk−2 + a2xk−3 − ...− ak−1x0] ,

x−2 = − 1

ak
[xk−2 + a1xk−3 + a2xk−4 − ...− ak−1x−1] ,

and so on. This is why kerL for L : S̃ → S̃ has the same bases as those constructed in Theorem 1.5,
dim kerL = k, etc. The only extension is made relative to n, which have to run all over Z this time. For
instance, if K = Q and L = T 2 − 5T + 6I = (T − 2I) ◦ (T − 3I), kerL = {C12n +C23n}n∈Z and its basis
is the set of the two infinite geometrical progression:

...,
1

23
,

1

22
,

1

2
, 1, 2, 22, 23, ...

of ratio 2, and

...,
1

33
,

1

32
,

1

3
, 1, 3, 32, 33, ...

of ratio 3.

2. Recurrent sequences and algebraic field extensions

We assume that our field K is a perfect field, i.e. any algebraic extension of it is separable (see [2]).
This is equivalent to say that for any α ∈ K, the polynomial fα(x) ∈ K[x] of minimal degree such that
α is a root of it has only simple roots, i.e. f ′α(α) 6= 0 ([2]).

Definition 2.1. We say that a sequence f : Z→ K, defined on the whole Z with values in the field K,
is a recurrent sequence of a period k if there exists a linear shift operator

L = T k + a1T
k−1 + ...+ ak−1T + akI, aj ∈ K, j = 1, 2, ..., k, ak 6= 0,

(see also 1.1) with f ∈ kerL. If f(n) = xn, n ∈ Z, i.e. if f = {xn}n∈Z, f is a recurrent sequence if and
only if

(2.1) xn+k = −a1xn+k−1 − a2xn+k−2 − ...− ak−1xn+1 − akxn, ak 6= 0, n ∈ Z.

If L0 has the least possible order with f ∈ kerL0 and if k0 is this order, we call this k0 the degree (or the
period) of f and L0 is called the minimal (shift) operator of f (see bellow the uniqueness of L0).

The mapping

(2.2) L = T k + a1T
k−1 + ...+ ak−1T + akI → P (r) = rk + a1r

k−1 + ...+ ak−1r + ak ∈ K[r]

defines a ring isomorphism between the commutative ring of all linear shift operators (with composition
”◦” for multiplication) and the polynomial ring K[r] in the variable r. Here by the composition between
two linear shift operators L = T k + a1T

k−1 + ... + akI and M = T l + b1T
l−1 + ... + blI we mean

a ”polynomial multiplication” in K[T ], i.e. T i ◦ T j = T i+j , etc. We say that L is irreducible if its
characteristic polynomial is irreducible in K[r]. Thus L is irreducible if and only if L cannot be written
as L = L1 ◦ L2, where the orders k1, k2 of L1 and L2 respectively are greater then zero. For instance, if
K = Q, the rational number field, then L = T 2 − 2I is irreducible (over Q) but it is not irreducible over

K = Q[
√

2]: L = (T −
√

2I) ◦ (T +
√

2I) over Q[
√

2]. Here T : S̃ → S̃ is the usual simple shift operator:
T (f) = g, where g(n) = f(n + 1). We also remark that T is invertible: T−1(f)(n) = f(n − 1). It is not
invertible if we restrict it to S.

If L = L1 ◦ L2, we say that L1 and L2 are factors of L or that L is divisible by L1 and L2. We also
say that L is a multiple of L1 or of L2.



Proposition 2.2. Let {xn}n∈Z be a recurrent sequence of S̃ (over K) and let L0 be a minimal shift
operator of {xn}n∈Z. Then any other linear shift operator L such that {xn}n∈Z ∈ kerL is a multiple of
L0, i.e. L = L0 ◦ L1. In particular L0 is unique with the property that it is minimal for {xn}n∈Z.

Proof. Let P0(r), P (r) be the characteristic polynomials of L0 and L respectively. The division algorithm
of Euclid says that there exist two monic polynomials Q(r) and R(r) with

(2.3) P (r) = P0(r)Q(r) + aR(r)

degR(r) < degP0(r) and a ∈ K. Because of the above ring isomorphism, the formula (2.3) can be
rewritten in language of shift operators:

(2.4) L = L0 ◦ L1 + aL2,

where L1 and L2 are the unique shift operators which have as characteristic polynomials Q(r) and R(r)
respectively. Since {xn}n∈Z ∈ kerL ∩ kerL0, from (2.4) we get that {xn}n∈Z ∈ kerL2 if a 6= 0. Since L0

has the least order possible such that {xn}n∈Z ∈ kerL0 and since the order of L2 is less than the order
of L0, we see that L2 = 0 and so, L = L0 ◦ L1. If a = 0, we get the same result. If L0, M0 were two
minimal shift operators for {xn}n∈Z, we get L0 = M0 ◦Q0. Since L0 and M0 have the same order k0, the
order of Q0 is equal to zero, i.e. Q0(f) = bf, where b ∈ K. But the characteristic polynomials of L0 and
M0 are monic polynomials, thus b = 1 and so Q0 = I, the identity operator. Hence L0 = M0. �

Remark 2.3. The minimal shift operator of a recurrent sequence {xn}n∈Z is not always irreducible. For
instance, the minimal shift operator L of the recurrent sequence f = (...1, 0, 1, 0, 1, ...1, 0, 1, ...) (over Q),
x0 = 1, x1 = 0, etc., is T 2 − I. But this one is not irreducible: T 2 − I = (T − I) ◦ (T + I) and, as it is
obvious, f /∈ ker(T − I) and f /∈ ker(T + I).

Remark 2.4. The set S̃ of all sequences f : Z→ K is a commutative group relative to the usual addition
of functions: (f + g)(n) = f(n) + g(n). The subset A of all recurrent sequences f of S is an additive
subgroup of S. Indeed, if Lf = T k + a1T

k−1 + ...+ akI, Lg = T l + b1T
l−1 + ...+ blI, ak, bl 6= 0, are the

minimal shift operators of f and g respectively, then for L = Lf ◦ Lg = Lg ◦ Lf we obviously have that
f + g ∈ kerL. We shall also see in the next section that the Hadamard product (fg) (n) = f(n)g(n) of

two recurrent sequences f and g of S̃ is again a recurrent sequence in S̃ (see also [1] for some other cases).

Theorem 2.5. Let L be a linear shift operator defined on S̃ and let

L = L1 ◦ L2 ◦ ... ◦ Lh
be a factorization of L into linear shift operators (over K) of orders greater or equal to 1. Then kerL =∑h
i=1 kerLi and this sum is a direct sum.

Proof. Since the composition between linear shift operators is commutative we see that kerL ⊃∑h
i=1 kerLi. Let k be the order of L and ki, i = 1, 2, ..., h be the order of Li. The isomorphism (2.2) says

that k =
∑h
i=1 ki and Theorem 1.5 says that dimK Li = ki, i = 1, 2, ..., h. Thus kerL =

∑h
i=1 kerLi and

the sum is direct. �

Let L be a k-order linear shift operator, k > 0 and let P (r) ∈ K[r] be its corresponding characteristic
polynomial. Let P (r) = Pm1

1 (r) · ... · Pmh

h (r) be the factorization of P (r) into distinct monic irreducible
polynomial P1(r), ..., Ph(r) over K. The isomorphism (2.2) says that L has the following unique factor-
ization:

(2.5) L = Lm1
1 ◦ Lm2

2 ◦ ... ◦ Lmh

h ,

where Li is an irreducible linear shift operator over K for any i = 1, 2, ..., h. Theorem 2.5 says that it is
sufficient to construct a ”special” basis in kerLmi

i , i = 1, 2, ..., h. The following lemma will reduce such a
construction to the case of mi = 1, i.e. to the case of an irreducible linear shift operator.



Lemma 2.6. Let L be a linear shift operator of order at least 1 and let f = {xn}n∈Z be an element
in kerL. Then the sequence {nxn}n∈Z is an element of kerL2, i.e. L({nxn}n∈Z) ∈ kerL. In general, if

g = {yn}n∈Z ∈ kerLm, then {ng(n)}n∈Z ∈ kerLm+1 for any m = 1, 2, ... .

Proof. Let r1, ..., rl be the distinct roots (in K) of the characteristic polynomial P (r) of L and let
m1,m2, ...,ml be the algebraic multiplicities of r1, r2, ..., rl respectively. Then r1, ..., rl are all the dis-
tinct roots of the characteristic polynomial P 2(r) of L2 with their algebraic multiplicities 2m1, ..., 2ml

respectively. From Theorem 1.5 we see that f is a linear combination over K with elements of the
form {njrni }n, j = 1, 2, ...,mi − 1, i = 1, 2, ..., l. Thus {nxn}n is a linear combination of {nj+1rni }n,
j = 1, 2, ...,mi − 1, i = 1, 2, ..., l. Since 1 ≤ j ≤ mi − 1, we see that 2 ≤ j + 1 ≤ mi ≤ 2mi − 1, so{
nj+1rni

}
n
∈ kerL2 and finally {nxn}n ∈ kerL2. Let us assume now that g ∈ kerLm is a linear combi-

nation over K of {njrni }n, j = 1, 2, ...,mmi − 1, i = 1, 2, ..., l. Thus, {ng(n)}n is a linear combination of
{nj+1rni }n, j = 1, 2, ...,mmi − 1, i = 1, 2, ..., l. Since

2 ≤ j + 1 ≤ mmi ≤ (m+ 1)mi − 1

we see that {nj+1rni }n ∈ kerLm+1, i.e. {ng(n)}n ∈ kerLm+1. �

Let S̃ be the set of all sequences f = {xn}n∈Z with values in a perfect field K and let S̃ = S̃ ⊗K K be
the set of all sequences g = {yn}n∈Z with values in K. Let L = T k + a1T

k−1 + ...+ ak−1T + akI, ak 6= 0,
be an irreducible linear shift operator over K, defined on S, and let m be a natural number greater than

zero. We can also view L over K, i.e. we can also view it as a linear shift operator L defined on S̃. It is
obvious that L is irreducible if and only if L has order 1. Thus, the tower of K-vector subspaces:

(2.6) kerL ⊂ kerL2 ⊂ kerL3 ⊂ ... ⊂ kerLm

can be viewed by tensorization with K over K as a new tower of K-vector subspaces:

(2.7) kerL
‖

kerL⊗kK

⊂ kerL
2

‖
kerL2⊗kK

⊂ kerL
3

‖
kerL3⊗kK

⊂ ... ⊂ kerL
m

‖
kerLm⊗kK

.

Let P (r) be the characteristic polynomial of L and let r1, r2, ..., rl be all the roots of it (in K). Since
K is a perfect field, and since P (r) is irreducible, r1, r2, ..., rl are distinct. Let F = K[r1, r2, ..., rl] be
the least subfield of K which contains all the roots of P (r). The extension of fields F/K is a normal
extension, i.e. if y ∈ F, all the other roots of the minimal (irreducible) polynomial Py(r) ∈ K[r] of y
are also in F. This means that F/K is a Galois extension, i.e. for any α ∈ F and for any K-embedding
σ of F in K, σ(α) ∈ F (see [2]). Theorem 1.5 says that recurrent sequences (infinite geometrical
progressions) {rn1 }n∈Z, ..., {rnl }n∈Z is a basis of kerL over K. Lemma 2.6 and this last mentioned theorem

say that {nrn1 }n∈Z, ..., {nrnl }n∈Z is a basis of kerL
2
/ kerL, ..., {nm−1rn1 }n∈Z, ..., {nm−1rnl }n∈Z is a basis of

kerL
m
/ kerL

m−1
. This is equivalent to saying that the set of sequences

{rn1 }n∈Z, ..., {rnl }n∈Z, {nrn1 }n∈Z, ..., {nrnl }n∈Z, ...(2.8)

..., {nm−1rn1 }n∈Z, ..., {nm−1rnl }n∈Z(2.9)

is a basis of kerL
m
. Since dimK kerL = dimK kerL = l, first of all we are to search for a basis of kerL

over K with l elements.
For this, since F/K is separable, let z be a primitive element of F/K, i.e. an element z ∈ F such that

F = K[z] (see [2]). We know that {1, z, z2, ..., zl−1} is a basis of the vector space F over the field K (see
[2]). Let G = Gal(F/K) be the Galois group of F/K and let σ1 = identity, σ2, ..., σl be all the elements



of G. We can assume that r2 = σ2(r1), ..., rl = σl(r1). So, for any fixed n ∈ Z we can write:

(2.10)


rn1 = C

[n]
1 + C

[n]
2 z + ...+ C

[n]
l zl−1

rn2 = C
[n]
1 + C

[n]
2 σ2(z) + ...+ C

[n]
l σ2(z)l−1

...

rnl = C
[n]
1 + C

[n]
2 σl(z) + ...+ C

[n]
l σl(z)

l−1

,

where C
[n]
j , j = 1, 2, ..., l are elements in K. We can view (2.10) as a linear system in the un-

knowns C
[n]
1 , C

[n]
2 , ..., C

[n]
l . Since its determinant is a Vandermonde determinant with value ∆ =∏

1≤i<j≤l [σj(z)− σj(z)] 6= 0, because z = σ1(z), σ2(z), ..., σl(z) are all the (distinct) roots of the
minimal polynomial of z. Since

C
[n]
1 =

∆
[n]
1

∆
, ..., C

[n]
l =

∆
[n]
l

∆
,

where

(2.11) ∆
[n]
j =

∣∣∣∣∣∣∣∣∣∣∣∣

1 z · · ·
j−th col

rn1 · · · zl−2 zl−1

1 σ2(z) · · · rn2 · · · σ2(z)l−2 σ2(z)l−1

...
...

...
...

...
...

...
1 σl−1(z) · · · rnl−1 · · · σl−1(z)l−2 σl−1(z)l−1

1 σl(z) · · · rnl · · · σl(z)
l−2 σl(z)

l−1

∣∣∣∣∣∣∣∣∣∣∣∣
=

= dj1r
n
1 + dj2r

n
2 + ...+ djlr

n
l ,

where djs ∈ F for any j, s = 1, 2, ..., l. Thus
{
C

[n]
j

}
n∈Z
∈ kerL for any j = 1, 2, ..., l. Since ∆ 6= 0 and

since {rn1 }n∈Z, ..., {rnl }n∈Z is a basis in kerL we see that
{
C

[n]
1

}
n∈Z

,
{
C

[n]
2

}
n∈Z

, ...,
{
C

[n]
l

}
n∈Z

is also a

basis in kerL. In particular they are linear independent over K. Since dim kerL = l, they are also a basis
in kerL.

Multiplying by nt, t = 1, 2, ...,m−1 the j-th column in (2.11) and using that fact that the set of (2.8) is a

basis of kerL
m
, we see that the set

{
nC

[n]
2

}
n∈Z

, ...,
{
nC

[n]
l

}
n∈Z

is a basis of kerL2/ kerL, ...,
{
nm−1C

[n]
1

}
n∈Z

,

nm−1
{
C

[n]
2

}
n∈Z

, ..., nm−1
{
C

[n]
l

}
n∈Z

is a basis of kerLm/ kerLm−1 (over K). Hence{
C

[n]
1

}
n∈Z

,
{
C

[n]
2

}
n∈Z

, ...,
{
C

[n]
l

}
n∈Z

,
{
nC

[n]
2

}
n∈Z

, ...,
{
nC

[n]
l

}
n∈Z

,

(2.12) ...,
{
nm−1C

[n]
1

}
n∈Z

, nm−1
{
C

[n]
2

}
n∈Z

, ..., nm−1
{
C

[n]
l

}
n∈Z

is a basis of kerLm over K.
Now we are ready to find a basis in kerL for an arbitrary k-order linear shift operator L defined on a

perfect field K.

Theorem 2.7. Let L = T k + a1T
k−1 + ... + ak−1T + akI, ak 6= 0 be an arbitrary k-order linear

shift operator over a perfect field K and let P (r) be the characteristic polynomial of L. Let P (r) =
P1(r)m1P2(r)m2 ...Ps(r)

ms be the factorization of P (r) into products of irreducible factors (over K). Let
t1, ..., ts be the degrees of the irreducible polynomials P1, P2, ..., Ps respectively. Let L = Lm1

1 ◦L
m2
2 ◦...◦Lms

s

be the corresponding factorization of the operator L into products of irreducible operators. Let Bj be the
basis (over K), of the form (2.12) for kerL

mj

j . Then B = ∪sj=1Bj is a basis of kerL over K.



Proof. From Theorem 2.5 we know that kerL =
∑s
j=1 kerL

mj

j and this sum is a direct sum. Hence
B = ∪sj=1Bj is a basis of kerL, where

Bj =
{
C

[n]
j1

}
n∈Z

,
{
C

[n]
j2

}
n∈Z

, ...,
{
C

[n]
jtj

}
n∈Z

,
{
nC

[n]
j1

}
n∈Z

, ...,
{
nC

[n]
jtj

}
n∈Z

,

...,
{
nm−1C

[n]
j1

}
n∈Z

, nm−1
{
C

[n]
j2

}
n∈Z

, ..., nm−1
{
C

[n]
jtj

}
n∈Z

is the corresponding basis of kerLmj constructed as above (see (2.12)). �

Example 2.8. Let L = T 6 + 7T 4 + 16T 2 + 12I be a linear shift operator defined on the vector space
of all two-sided sequences of rational numbers. Its characteristic polynomial is P (r) = (r2 + 2)2(r2 + 3),
this factorization being a factorization into irreducible factors over Q, the field of rational numbers. Let
L1 = T 2 + 2I and L2 = T 2 + 3I be the corresponding irreducible shift operators which appear in the
factorization of L = L2

1 ◦L2. First of all let us find a K-basis in kerL2
1. For this, we see that F1 = Q[i

√
2]

is the decomposition field of r2 + 2 = 0. So, r1 = i
√

2 and r2 = −i
√

2. Since

rn1 = C
[n]
11 + C

[n]
12 i
√

2,

where

(2.13) C
[n]
11 =


4, if n = 4k

0, if n = 4k + 1
−2, if n = 4k + 2
0, if n = 4k + 3

, C
[n]
12 =


0, if n = 4k

1, if n = 4k + 1
0, if n = 4k + 2
−2, if n = 4k + 3

,

the basis of kerL2
1 over Q is:

B1 =
[{
C

[n]
11

}
n
,
{
C

[n]
12

}
n
,
{
nC

[n]
11

}
n
,
{
nC

[n]
12

}
n

]
.

Now, let find a basis in kerL2. For this, we see that F2 = Q[i
√

3] is the decomposition field of r2 + 3 = 0.

So, s1 = i
√

3 and s2 = −i
√

3 are its roots. Since

sn1 = C
[n]
21 + C

[n]
22 i
√

3,

where

(2.14) C
[n]
21 =


9, if n = 4k

0, if n = 4k + 1
−3, if n = 4k + 2
0, if n = 4k + 3

, C
[n]
12 =


0, if n = 4k

1, if n = 4k + 1
0, if n = 4k + 2
−3, if n = 4k + 3

,

the basis of kerL2 over Q is:

B2 =
[{
C

[n]
21

}
n
,
{
C

[n]
22

}
n

]
.

Hence, the basis of kerL over K is:

B =
[{
C

[n]
11

}
n
,
{
C

[n]
12

}
n
,
{
nC

[n]
11

}
n
,
{
nC

[n]
12

}
n
,
{
C

[n]
21

}
n
,
{
C

[n]
22

}
n

]
.

3. Hadamard products of recurrent sequences over a perfect field

Let K be a perfect field and let K a fixed algebraic closure of it. Let G = Gal(K/K) be the absolute

Galois group of K, i.e. the group of all K-automorphisms σ of K. Let S̃ be the K-vector space of all two-

sided infinite sequences f : Z → K and let S̃ = S̃ ⊗K K be the K-vector space of all two-sided infinite

sequences g : Z → K. Thus, S̃ ⊂ S̃. The main problem of this section is to decide when a recurrent

sequence g of S̃ is an element of S̃. As usual, Lf denotes the minimal linear shift operator of f ∈ S̃ and

Lf denotes the extension of Lf to S̃. We know from Theorem 1.5 that if M is a linear shift operator on



S̃ and if PM (r) = (r − r1)m1(r − r2)m2 ...(r − rl)ml ∈ K[r] is the factorization into prime factors of its
characteristic polynomial, then kerM consists of all the recurrent sequences g : Z→ K of the form

(3.1) g(n) =

l∑
i=1

Pi(n)rni ,

where Pi(r) ∈ K[r] is a polynomial of degree at most mi − 1 for any i = 1, 2, ..., l. We can fix it by
giving the first m = m1 + ... + ml = degPM (r) values g(0), ..., g(m − 1) of g. Now, if f : Z → K is

a recurrent sequence of S̃, and if f ∈ kerL, where L is a linear shift operator on S̃, then f is also an

element of kerL, L being the natural extension of L to S̃. Let PL(r) = Ql11 (r)Ql22 (r)...Qltt (r) ∈ K[r] be the
factorization of the characteristic polynomial PL(r) of L into irreducible monic distinct factors Qi. Then
Qi(r), i = 1, 2, ..., t are coprime factors of PL(r). Let Qi(r) = (r− ri1)(r− ri2)...(r− risi), si = degQi be
the factorization in K of the irreducible (over K) polynomial Qi. Thus

(3.2) PL(r) =

t∏
i=1

si∏
j=1

(r − rij)li .

Since {rij} is a set of k = degPL(r) distinct elements in K,

(3.3) f(n) =

t∑
i=1

si∑
j=1

Pij(n)rnij ,

where Pij(r) ∈ K[r] are polynomials of degrees at most li − 1 for all j = 1, 2, ..., si. For any σ ∈ G =

Gal(K/K) we define the known action of σ on a polynomial H(r) = h0r
q+h1r

q−1+...+hq−1r+hq ∈ K[r] :

σ(H)(r) = σ(h0)rq + σ(h1)rq−1 + ...+ σ(hq−1)r + σ(hq) ∈ K[r].

Since Qi(r) is irreducible over K, then σ(Qi)(r) = Qi(r), i = 1, 2, ..., t (see [2]). Moreover, if Qi(r) =
(r − ri1)(r − ri2)...(r − risi), then

σ(Qi)(r) = (r − σ(ri1))(r − σ(ri2))...(r − σ(risi)) =

(3.4) = (r − ri1)(r − ri2)...(r − risi) = Qi(r).

Since for any i = 1, 2, ..., t,

(3.5) σ

 si∑
j=1

Pij(n)rnij

 =

si∑
j=1

Pij(n)rnij ,

from (3.3) we see that σ(f(n)) = f(n) for any σ ∈ G, what is known from the definition of G. Let
us remark that the set of elements

{
Pij(n)rnij

}
j=1,2,...,si

are all conjugates one to each other for any

i = 1, 2, ..., t.

We say that g ∈ S̃ is a K-regular recurrent sequence if g(n) =
∑l
i=1 Pi(n)rni (see (3.1)), where ri are

distinct and degPi(r) = ni, and if we can write the set {r1, ..., rl} as a union

{r1, ..., rl} = ∪ti=1O(ri)

of orbits relative to G relative to some ri ∈ {r1, ..., rl} such that for any rv = σ(ri) ∈ O(ri) the corre-
sponding Pv(r) = σ(Pi(r)); in particular the Pv(r) have the same degree for all rv ∈ O(ri), i = 1, 2, ..., t.

In fact we just proved the following criterion.

Theorem 3.1. Let g : Z→ K be a recurrent sequence in S̃ with the minimal linear shift operator Lg and

kerLg =
{

(yn)n, yn =
∑l
i=1 Pi(n)rni

}
, where r1, ..., rl are the distinct roots of characteristic polynomial

Pg of Lg with the algebraic multiplicities m1, ...,ml respectively. Then g is in S̃ if and only if g is
K-regular.



Example 3.2. The sequence

f(n) = (3n−
√

2)

(
1 +
√

2

5

)n
+ (3n+

√
2)

(
1−
√

2

5

)n
, n ∈ Z,

considered over Q[
√

2] is in fact a sequence over Q. Indeed, if σ ∈ Gal(Q/Q), then σ(f(n)) = f(n), so
f(n) ∈ Q. We see that f is a Q-regular sequence with the above definition. In fact f(n) is the sum of

elements of the orbit of (3n−
√

2)
(

1+
√
2

5

)n
.

Corollary 3.3. (see also [1]) Let f and g be two recurrent sequences of S̃, i.e. with entries in K and
let h = fg, h(n) = f(n)g(n) be the Hadamard product of f and g. Then h is a recurrent sequence with a
period at most km, where k is the period of f and m is the period of g.

Proof. From the above discussion, let Pf (r) = Ql11 (r)Ql22 (r)...Qltt (r) ∈ K[r] be the factorization into
irreducible polynomials in K[r] of the characteristic polynomial Pf (r) of the minimal shift operator Lf
of f. Let Qi(r) = (r− ri1)(r− ri2)...(r− risi), si = degQi, be the factorization of Qi in K, i = 1, 2, ..., t.
Let Pg(r) = Ru1

1 (r)Ru2
2 (r)...Ruv

v (r) ∈ K[r] be the factorization into irreducible polynomials in K[r] of
the characteristic polynomial Pg(r) of the minimal shift operator Lg of g (degPg(r) −m). Let Ri(r) =

(r − qi1)(r − qi2)...(r − qiwi
), wi = degRi, be the factorization of Ri in K, i = 1, 2, ..., v. Thus,

f(n) = f(n) =

t∑
i=1

si∑
j=1

Pij(n)rnij ,

as in (3.3) and

g(n) =

v∑
i=1

wi∑
j=1

Sij(n)qnij ,

where degSij(r) is at most ui− 1 for any i = 1, 2, ..., v. Since a linear combination of recurrent sequences
over K is also a recurrent sequence over K (see Remark 2.4), it remains to see that the sum of the
elements of an orbit of an element Pij(n)Sab(n)rnijq

n
ab in the expression of f(n)g(n) is invariant relative

to any σ ∈ G = Gal(K/K), i.e. we prove that fg is K-regular. But this is obvious because f and g are
K-regular. Thus fg is again a recurrent sequence over K. Counting the number of terms in the expression
of fg, we see that the degree of fg is at most km. �

In many other papers ([3]-[5], [10]) we find more complicated proofs of this main result (see the
references of [1]).

Remark 3.4. Theorem 3.1 also implies another interesting result. Let f and g be two recurrent sequences
in S with their minimal linear shift operators Lf and Lg respectively. Then there exist a unique recurrent
sequence h ∈ S such that kerLf ⊗K kerLg = kerLh, where Lh is the minimal linear shift operator of h.
We do not know if this h has something in common with the Hadamard product fg. Is it a new interesting
product of f and g?
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