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Abstract. Let K be an arbitrary algebraically closed field of
characteristic zero and let K[[x]] be the ring of integral formal
power series; let Ω be the K-subalgebra of K[[x]] generated by x

and the subset TK = {exp(λx) : λ ∈ K}. In this note we sup-
ply some easy and elegant proofs for some classical results on the
preimage of elements of the form xqQ(x) exp(rx) through a linear
differential operator with coefficients in K. We also make some the-
oretical considerations on the structure of the space of all solutions
for a linear ODE defined over K[[x]].

1. Some introductory remarks

Let K be an algebraically closed field of characteristic zero [LS] and
let x be a variable over K (simply an element x not belonging to K).
LetK[[x]] be the ring of all formal integral power series f = a0+a1x+...,
ai ∈ K, i = 0, 1, .... Here d

dx
: K[[x]] → K[[x]], df

dx
= a1 + 2a2x + ... +

nanx
n−1 + ..., is the usual differential operator defined on K[[x]]. For

y ∈ K[[x]], we also denote

y(n) =
dny

dxn
=




d

dx
◦ ... ◦ d

dx︸ ︷︷ ︸
n−times


 (y).

Theorem 1. Let b1, ..., bn, c be n + 1 elements in K[[x]]. Then any
solution y ∈ K[[x]] of the linear differential equation

(1.1) y(n) + b1y
(n−1) + ...+ bny = c,

is of the form:

(1.2) y = d0 + d1x+ ...+ dtx
t + ...,
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where d0, ..., dn−1 are n free parameters in K and

(1.3) dn+k =
k∑

j=0

α
(k)
j cj +

n−1∑

i=0

β
(k)
i di,

k = 0, 1, ..., α
(k)
j , β

(k)
i ∈ Q[buv], where

(1.4) bu = bu0 + bu1x+ ...,

(1.5) c = c0 + c1x+ ...,

buv, cj ∈ K, u = 1, 2, ..., n, v = 0, 1, ... .

Proof. For y of the form (1.2) one has:

(1.6) y(m) =
∞∑

t=m

t(t− 1)...(t−m+ 1)dtx
t−m,

m = 1, 2, ...,m. Let us prove (1.3) by mathematical induction. In order
to prove (1.3) for k = 0, we consider the equality (1.1) modulo x, i.e.
we look at it in the quotient ring K[[x]]/(x), where (x) is the ideal
generated by x in K[[x]]. Thus we get:

(1.7) n!dn + b10(n− 1)!dn−1 + ...+ bn0d0 = c0.

Since the characteristic of K is equal to 0 (Q ⊂ K), we obtain:

dn = α
(0)
0 c0 +

n−1∑

i=0

β
(0)
i di,

where α
(0)
0 = 1

n!
, β

(0)
i = − i!

n!
bn−i,0di, i = 0, 1, ..., n − 1. We assume now

that formula (1.3) is true for k = 0, 1, ..., q. Let us prove it for k = q+1.
For this, we come back to (1.1) and consider it modulo xq+2 :

n+q+1∑

t=n

t!

(t− n)!
dtx

t−n +

[
q+1∑

l=0

b1lx
l

][
n+q∑

t=n−1

t!

(t− n+ 1)!
dtx

t−n+1

]
+

(1.8) +...+

[
q+1∑

l=0

bnlx
l

][
q+1∑

t=0

dtx
t

]
= c0 + c1x+ ...+ cq+1x

q+1

In this last polynomial equality we identify the coefficients of xq+1 and
get:

(n+ q + 1)!

(q + 1)!
dn+q+1 +

q+1∑

l=0

(n+ q − l)!

(q − l + 1)!
b1ldn+q−l + ...+
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(1.9) +

q+1∑

l=0

bnldq+1−l = cq+1.

Since in these above sums appear (excepting the constants!) only
d0, ..., dn, ..., dn+q and since dn, dn+1, ..., dn+q are computed by using for-
mulas (1.3) - mathematical induction hypotheses - we finally conclude
that dn+q+1 can be written as in (1.3). If c = 0, i.e. c0 = c1 = ... = 0,
we see from (1.3) that dn+k are linear combinations of d0, ..., dn−1, i.e.
the vector space of all solutions of the homogenous equation (1.1) (with
c = 0) is exactly equal to n. �

Remark 1. If, in (1.1), c = 0, i.e. c0 = c1 = ... = 0, we see from (1.3)
that dn+k are linear combinations of d0, ..., dn−1, i.e. the vector space of
all solutions of the homogenous equation (1.1) (with c = 0) is exactly
equal to n.

Remark 2. Theorem 1 can be viewed as an existence and uniqueness
theorem for the following Cauchy problem in K[[x]] : find y = y(x) ∈
K[[x]] such that the equality (1.1) is true and y(0) = d0, y′(0) =
d1, ..., y

(n−1)(0) = (n− 1)!dn−1 are given. This means to fix d0, ..., dn−1

in (1.2). Since dn, dn+1, ... are linear functions of d0, ..., dn−1, c0, c1, ...
(see (1.3)), the existence and uniqueness of y is clear enough. Here, for
f ∈ K[[x]], f(0) means the constant term of f

For any element λ ∈ K we denote exp(λx) the following formal power
series:

(1.10) exp(λx) =
∞∑

n=0

λn

n!
xn

with coefficients in K. Since Q ⊂ K, one can easily see that

exp(λx) · exp(µx) = exp((λ+ µ)x),

for any λ, µ ∈ K.
Let us denote TK = {exp(λx) : λ ∈ K} and let Ω be the K-

subalgebra of K[[x]] generated by the variable x and by the subset
TK . In the following we shall consider linear differential equations of
the form (1.1), with c = 0 and b1, ..., bn constant elements, i.e. elements
in K.
Let I be the identity operator defined on Ω and let L : Ω → Ω be

the following linear differential operator:

(1.11) L[y] = y(n) + a1y
(n−1) + ...+ an−1y

′ + any,

where y ∈ Ω, y(j) = djy

dxj and aj ∈ K for any j = 1, 2, ..., n. Here d0

dx0 = I.
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The equation

(1.12) E(z) = zn + a1z
n−1 + ...+ an−1z + an = 0

is called the associated algebraic equation to the differential operator L.
Let r1, r2, ..., rn ∈ K be all the roots of equation (1.12). After an even-
tually appropriate rearrangement of r1, r2, ..., rn, let r1, r2, ..., rk, k ≤ n,
be all the distinct roots with their algebraic multiplicities t1, t2, ..., tk
respectively. So

(1.13) E(z) = (z − r1)
t1(z − r2)

t2 ...(z − rk)
tk

is the decomposition of the polynomial E(z) in coprime factors over
the algebraically closed field K. The decomposition (1.13) induces the
following decomposition of the linear operator L into powers of linear
differential operators of order one:

(1.14) L =

(
d

dx
− r1I

)t1
(

d

dx
− r2I

)t2

...

(
d

dx
− rkI

)tk

In this note we supply new easy elementary proofs (they can be used
even in the undergraduate teaching!) for the following classical results
(known for K = C, the field of complex numbers).

Theorem 2. Let λ ∈ K\{r1, r2, ..., rk} and let Q ∈ K[x], degQ = m
be an arbitrary polynomial of degree m with coefficients in the field K.
Then there exists a unique polynomial P ∈ K[x] of degree m such that

(1.15) L[P exp(λx)] = Q exp(λx).

Theorem 3. Let q be a natural number (0 included) and let Q ∈ K[x]
be a polynomial of degree m. Then there exists a unique polynomial
Pq ∈ K[x] of degree m such that

(1.16) L
[
xq+t1Pq exp(r1x)

]
= xqQ exp(r1x),

where r1 is a root of algebraic multiplicity t1 of the above equation
(1.12). In particular, if q = 0, we get a classical result in LDE of order
n with constant coefficients.

2. Proof of Theorems 2, 3 and some other remarks

Lemma 1. Let λ, r ∈ K, λ 6= r and let Q ∈ K[x] be a polynomial of
degree m with coefficients in K. Then there exists a unique polynomial
P ∈ K[x] of degree m such that

(2.1)

(
d

dx
− rI

)
[P exp(λx)] = Q exp(λx).
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If K0 is a subfield of K, if λ, r ∈ K0 and if Q ∈ K0[x], then this
polynomial P has coefficients in K0.

Proof. Let us compute the left side of (2.1) and then simplify by exp(λx).
We get:

(2.2) P ′ + (λ− r)P = Q.

If we write Q(x) = c0 + c1x + ... + cmx
m, from (2.2) one can eas-

ily uniquely determine the coefficients b0, b1, ..., bm of the searched for
polynomial P (x) = b0+ b1x+ ...+ bmx

m. Moreover, we see that each bj
is a linear expression of c0, c1, ..., cm with coefficients in Q(λ, r) which is
included in any subfield K0 of K with λ, r ∈ K0. Here Q is the subfield
of rational numbers viewed in K (since the characteristic of K is equal
to zero). �

Lemma 2. Let r ∈ K, Q ∈ K[x], degQ = m and q ∈ N. Then there
exists a unique polynomial Pq ∈ K[x], degPq = m, such that:

(2.3)

(
d

dx
− rI

)[
xq+1Pq exp(rx)

]
= xqQ exp(rx).

If r ∈ K0, a subfield of K, and Q ∈ K0[x], the Pq ∈ K0[x].

Proof. Computing the left side of (2.3) and then simplifying by xq exp(rx),
one obtains:

(2.4) (q + 1)Pq + xP ′

q = Q.

If we write againQ(x) = c0+c1x+...+cmx
m, it is easy to uniquely deter-

mine the coefficients d0, d1, ..., dm of the searched polynomial Pq(x) =
d0 + d1x+ ...+ dmx

m as linear combinations of c0, c1, ..., cm with coef-
ficients in Q(r) which is included in any subfield of K which contains
r. �

Now we can prove Theorem 2.

Proof. (Theorem 2) Mathematical Induction is used on n = t1 + t2 +
... + tk (see the above notation). For n = k = t1 = 1, one directly
apply Lemma 1. Assume that the statement of Theorem 2 is true for
h = 1, 2, ..., n− 1. Let us prove it for h = n. Let

L =

(
d

dx
− r1I

)
L∗,

where

(2.5) L∗ =

(
d

dx
− r1I

)t1−1 (
d

dx
− r2I

)t2

...

(
d

dx
− rkI

)tk

.
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Let P1 ∈ K[x] be the unique polynomial of degree m with

(2.6)

(
d

dx
− r1I

)
[P1 exp(λx)] = Q exp(λx).

(see Lemma 1). Let now P ∈ K[x] be the unique polynomial of degree
m such that

(2.7) L∗ [P exp(λx)] = P1 exp(λx).

(see the above Mathematical Induction assumption).
Apply now

(
d
dx

− r1I
)
in both sides in (2.7) and finally obtain

L[P exp(λx)] = Q exp(λx),

i.e. the statement of Theorem 2. �

Let now prove Theorem 3.

Proof. (Theorem 3) The same Mathematical Induction on n = t1+t2+
... + tk is used. For n = k = t1 = 1, one can simply apply Lemma 2.
Suppose that the statement of Theorem 3 is true for h = 1, 2, ..., n− 1.
Let us prove it for h = n. Let again

L =

(
d

dx
− r1I

)
L∗,

where L∗ is defined in (2.5). Let P1,q ∈ K[x] be the unique polynomial
of degree m with

(
d

dx
− r1I

)[
xq+1P1,q exp(r1x)

]
= xqQ exp(r1x).

(see Lemma 2).
Let now P ∈ K[x] be the unique polynomial of degree m with

(2.8) L∗
[
xq+1+t1−1Pq exp(r1x)

]
= xq+1P1,q exp(r1x).

Let us apply
(

d
dx

− r1I
)
both sides in (2.8). Finally we get that Pq is

the unique required polynomial in (1.16) and the proof of Theorem 3
is complete. �

Let us say some words on the ”structure of solutions” of the equation
L[y] = 0 in this general frame.

Lemma 3. Let r1 be a root of algebraic multiplicity t1 of the polynomial
equation E(z) = 0 (see 1.12). Then for any polynomial P (x) ∈ K[x]
with degP < t1 one has that L[P exp(r1x)] = 0.
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Proof. We simply successively compute
(

d

dx
− r1I

)
[P (x) exp(r1x)] = P ′(x) exp(r1x),

(
d

dx
− r1I

)2

[P (x) exp(r1x)] =

(
d

dx
− r1I

)
[P ′(x) exp(r1x)] =

= P ′′(x) exp(r1x), ...

...

(
d

dx
− r1I

)t1

[P (x) exp(r1x)] = P (t1)(x) exp(r1x) = 0,

because the t1-th derivative of a polynomial of degree less than t1 is
equal to zero. �

Lemma 4. Let r1, r2, ..., rk be k distinct elements in K. Then exp(r1x),
exp(r2x), ..., exp(rkx) are (as elements in the vector space Ω over K(x))
linear independent over K(x). Here K(x) is the rational function field
in the variable x over the initial field K.

Proof. Let

(2.9) P1(x) exp(r1x) + P2(x) exp(r2x) + ...+ Pk(x) exp(rkx) = 0,

where we can assume that P1(x), P2(x), ..., Pk(x) are nonzero polyno-
mials of degrees n1, n2, ..., nk respectively. We want to prove that all
these polynomials are zero. Let n = n1 + n2 + ... + nk be the sum of
all degrees of these polynomials. Since we just assumed that all poly-
nomials are nonzero, we have that n ≥ 0. From the set of all linear
combinations like in (2.9) we choose one with n the least possible. We
shall prove firstly that n = 0. One can also assume that k ≥ 2, other-
wise, from (2.9), P1(x) = 0 and so n = −∞. Take for instance k1 6= 0.
If n > 0, let us differentiate the equality (2.9) with respect to x :

(2.10)
k∑

i=1

(P ′

i + riPi) exp(rix) = 0.

Since r1 6= 0, we can eliminate P1 exp(r1x) between (2.9) and (2.10)
and obtain:

− 1

r1
P ′

1 exp(r1x) +
k∑

i=2

(
Pi −

1

r1
P ′

i −
ri
r1
Pi

)
exp(rix) = 0.

Here is an expression like that one from (2.9) but the sum of the degrees
of the corresponding polynomials is at most n−1. Thus we just obtained
a contradiction relative to the choice of n. Hence n = 0, i.e. any
nontrivial linear combination between exp(r1x), exp(r2x), ..., exp(rkx),
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over K(x) must have coefficients in K. It remains to prove that from
any linear combination

(2.11) a1 exp(r1x) + a2 exp(r2x) + ...+ ak exp(rkx) = 0,

one derives that a1 = 0, a2 = 0, ..., ak = 0. We prove this by mathe-
matical induction on k. The statement is clear for k = 1. Suppose that
the statement is true for k − 1. Let us prove it for k, i.e. we consider
the equality (2.11). Let us differentiate (2.11):

(2.12) r1a1 exp(r1x) + r2a2 exp(r2x) + ...+ rkak exp(rkx) = 0.

Let us now multiply (2.11) by r1 and subtract the result from (2.12):

(r2 − r1)a2 exp(r2x) + ...+ (rk − r1)ak exp(rkx) = 0.

By using the induction hypothesis we get:

(r2 − r1)a2 = 0, ..., (rk − r1)ak = 0.

Since r1, r2, ..., rk are distinct, we conclude that a2 = 0, a3 = 0, ..., ak =
0. Coming back to (2.11) we find that a1 = 0 (we proved above that
exp(λx) 6= 0) and the proof of the lemma is completed. �

Theorem 4. Let S be the K-vector subspace of Ω which consists of
all solutions y ∈ Ω of the linear differential equation L[y] = 0. Then
dimK S = n.

Proof. Since for any i = 1, 2, ..., k and for any polynomial Pi of degree
ti − 1 one has L[Pi exp(rix)] = 0 (see Lemma 3) any element

y =
k∑

i=1

Pi exp(rix) ∈ Ω

is a solution of L[y] = 0. Since also exp(r1x), exp(r2x), ..., exp(rkx)
are linear independent over K(x), we conclude that {xji exp(rix)} ,
i = 1, 2, ..., k and ji = 0, 1, ..., ti−1 are linear independent solutions of

L[y] = 0, over K. Thus dimK S ≥ n =
∑k

i=1 ti. But, from Remark 1,
dimK S ≤ n and thus dimK S = n. �

Example 1. Let K = Q3 be a fixed algebraic closure (see [LS]) of the
3-adic number field Q3 (see [GP] or [G] for definitions and notation)
and let

(2.13) y′′ + 2y = 0

be a linear differential equation of order two. If we search for a solution
y ∈ K[[x]] like in Theorem 1, we can easily find two linear independent
(over K) power series y1, y2 ∈ Q[[x]], solutions of (2.13), such that the
K-vector space of all solutions in K[[x]] of (2.13) can be generated
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by y1 and y2. Usually, it is not so comfortable to work with solutions
in this form. The best idea is to search for solutions of the form:
y∗ = exp(λx) ∈ Ω, λ ∈ K. Since (y∗)′+2y∗ = 0 implies λ2+2 = 0, this
means that λ = ±i

√
2, where i =

√
−1,

√
2 are in K. They, separately,

are not in Q3, but ±i
√
2 ∈ Q3 (see [GP] or [G]), because the algebraic

equation λ2 + 2 = 0 has two distinct solutions (±1̂) modulo 3. Thus,
y∗1 = exp(i

√
2) and y∗2 == exp(−i

√
2) are linear independent solutions

of (2.13) which generate the whole K-vector space of all solutions, i.e.
any solution y is of the form:

y = C1y
∗

1 + C2y
∗

2,

where C1, C2 are arbitrary elements in K. This last description is easier
than that one given in language of power series.

Example 2. Let this time K = C(X) be a fixed algebraic closure
of the field C(X) of rational functions with coefficients in the field of
complex numbers. Let us consider the linear differential equation

y′′ +Xy = 0,

with coefficients in K. It is very easy to find two linear independent
power series y1, y2 ∈ Q(X)[[x]] which generate the 2-dimensional vector
space of all solutions of the differential equation, viewed in K[[x]].
However, by using the above theory, we can find two linear independent
solutions y∗1 = exp(

√
X · x), y∗2 = exp(−

√
X · x) which can generate

the same 2-dimensional vector space of all solutions, but in an easier
way. Here

√
X, −

√
X ∈ K because of the Newton-Puisseux theorem

(K = ∪∞

n=1C((X
1

n ))), [Ab].

The above easy, elementary and elegant treatment of the linear dif-
ferential equations with constant coefficients can be used for K = C.
An alternate treatment in this case one can find in [RR].
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